python 字典中pop的用法_kwargs.pop

def hello(**kwargs):
    print (kwargs)
    #{'husband': 'yu', 'sex': 'nv', 'name': 'zhaojinye'}
    m = kwargs.pop("age","22")
    print (m , kwargs)
    #22
    # {'husband': 'yu', 'sex': 'nv', 'name': 'zhaojinye'}
def hello1(**kwargs):
    print(kwargs)
    # {'husband': 'yu', 'sex': 'nv', 'name': 'zhaojinye'}
    m = kwargs.pop('name')
    print(m, kwargs)
    # zhaojinye
    # {'husband': 'yu', 'sex': 'nv'}
def hello2(**kwargs):
    print(kwargs)
    # {'husband': 'yu', 'sex': 'nv', 'name': 'zhaojinye'}
    m = kwargs.pop("name","yushilin")
    print(m, kwargs)
    # zhaojinye
    # {'husband': 'yu', 'sex': 'nv'}
hello(name='zhaojinye' ,sex = "nv",husband = "yu")
hello1(name='zhaojinye' ,sex = "nv",husband = "yu")
hello2(name='zhaojinye' ,sex = "nv",husband = "yu")
``` if parallel: radon_288_736 = para_prepare_parallel(2.5) radon_36_736 = para_prepare_parallel(16.5) helper = {"fbp_para_288_736": radon_288_736, "fbp_para_36_736": radon_36_736} while len(all_images) * args.batch_size < args.num_samples: model_kwargs = next(data) raw_img = model_kwargs.pop('raw_img').to("cuda") raw_img = down_up(raw_img,[288,736],"nearest") model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()} model_kwargs["fbp_para_36_736"] = radon_36_736 model_kwargs["fbp_para_288_736"] = radon_288_736 input_fbp = run_reco(th.flip(model_kwargs['low_res'].to("cuda") + 1., dims=[3]), helper["fbp_para_36_736"])[:,:,112:624,112:624] input_npy = input_fbp.squeeze().cpu().detach().numpy() plt.imshow(input_npy, cmap=plt.cm.gray) sample_fn = p_sample_loop_super_res sample = sample_fn( model, (args.batch_size, 1, 288, 736), #args.large_size, args.large_size # clip_denoised=args.clip_denoised, model_kwargs=model_kwargs, raw_img = raw_img, ) model_output_fbp = run_reco(th.flip(sample + 1.,dims=[3]), helper["fbp_para_288_736"])[:,:,112:624,112:624] target_fbp = run_reco(th.flip(raw_img + 1., dims=[3]), helper["fbp_para_288_736"])[:,:,112:624,112:624] target_npy = target_fbp.squeeze().cpu().detach().numpy() plt.imshow(target_npy, cmap=plt.cm.gray) npy = np.squeeze(model_output_fbp.cpu().detach().numpy()) print("mean: ", np.mean(npy)) print("std: ", np.std(npy)) print("max: ", np.max(npy)) print("min: ", np.min(npy)) raw_npy = target_fbp.squeeze().cpu().detach().numpy() print("SSIM:", ssim(npy, raw_npy,data_range=raw_npy.max()-raw_npy.min())) l2loss = th.nn.MSELoss().to(dist_util.dev()) print("MSELoss:", l2loss(model_output_fbp, target_fbp.to(dist_util.dev())).item()) lpip_loss = lpips.LPIPS(net="alex").to(dist_util.dev()) lpip_value = lpip_loss(model_output_fbp, target_fbp.to(dist_util.dev())) print("lpips:", lpip_value.item()) break```逐行解释代码
最新发布
04-03
``` radon_288_736 = para_prepare_parallel(2.5) radon_72_736 = para_prepare_parallel(8.5) radon_36_736 = para_prepare_parallel(16.5) helper = {"fbp_para_288_736": radon_288_736, "fbp_para_36_736": radon_36_736, "fbp_para_72_736": radon_72_736} for i in range(0, num//args.batch_size):# model_kwargs = next(data) raw_img = model_kwargs.pop('raw_img').to("cuda") index = model_kwargs.pop('index') model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()} model_kwargs["fbp_para_36_736"] = radon_36_736 model_kwargs["fbp_para_288_736"] = radon_288_736 sample_fn = p_sample_loop_super_res sample, sample_72_288 = sample_fn( model, (args.batch_size, 1, 288, 736), #args.large_size, args.large_size # clip_denoised=args.clip_denoised, model_kwargs=model_kwargs, ) model_72_sino = F.interpolate(sample_72_288, [72, 736], mode="nearest") model_72_fbp = run_reco(model_72_sino + 1., helper["fbp_para_72_736"])[:,:,112:624,112:624] model_72_fbp_npy = model_72_fbp.cpu().detach().numpy() model_output_fbp = run_reco(sample + 1., helper["fbp_para_288_736"])[:,:,112:624,112:624] target_fbp = run_reco(raw_img + 1., helper["fbp_para_288_736"])[:,:,112:624,112:624] output_fbp_npy = model_output_fbp.cpu().detach().numpy() for j in range(0, args.batch_size): l2loss_value = l2loss(model_output_fbp[j], target_fbp[j]).item() print("index:", index[j], "MSELoss:", l2loss_value) MSE.append(l2loss_value) raw_npy = target_fbp.cpu().detach().numpy() ssim_value = ssim(np.squeeze(output_fbp_npy[j]),np.squeeze( raw_npy[j]), data_range = raw_npy[j].max() - raw_npy[j].min()) psnr_value = psnr(np.squeeze(output_fbp_npy[j]),np.squeeze( raw_npy[j]), data_range = raw_npy[j].max() - raw_npy[j].min()) print("index:", index[j], "SSIM:", ssim_value) SSIM.append(ssim_value) PSNR.append(psnr_value) lpip_value = lpip_loss(model_output_fbp[j], target_fbp[j]) print("lpips:", lpip_value.item()) LPIP.append(lpip_value.item())```什么意思
04-03
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值