魔方阵

       所谓“n-魔方阵”,指的是使用1〜n2共n2个自然数排列成一个n×n的方阵,其中n为奇数;该方阵的每行、每列及对角线元素之和都相等,并为一个只与n有关的常数,该常数为n×(n2+1)/2。

假定阵列的行列下标都从0开始,则魔方阵的生成方法为:

在第0行中间置1,对从2开始的其余n2-1个数依次按下列规则存放:

(1) 假定当前数的下标为(i,j),则下一个数的放置位置为当前位置的右上方,即下标为(i-1,j+1)的位置。

(2) 如果当前数在第0行,即i-1小于0,则将下一个数放在最后一行的下一列上,即下标为(n-1,j+1)的位置。

(3) 如果当前数在最后一列上,即j+1大于n-1,则将下一个数放在上一行的第一列上,即下标为(i-1,0)的位置。

(4) 如果当前数是n的倍数,则将下一个数直接放在当前位置的正下方,即下标为(i+1,j)的位置。

#include<stdio.h> 
#include<assert.h>
#define SIZE 5

void MagicSquare()
{
	int arr[SIZE][SIZE] = {0};
	int currow = 0;
	int curcol = SIZE/2;
	assert(SIZE%2 != 0);//1奇数
	arr[currow][curcol] = 1; //2
	for(int i
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值