搞了挺久,包括正确率的提高,还有各种错误之后好了
import tensorflow
import keras
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers.normalization import BatchNormalization
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
import numpy as np
#二维卷积层Conv2D
#keras.layers.convolutional.Conv2D(filters, kernal_size, strides = (1,1), padding = 'valdid')
#fileters是卷积核的数目,kernal_size是卷积核的尺寸,strides是卷积核移动的步长,padding是边界模式(一般分为same和valid两种,same是全填充,边界补零)
#二维池化层Maxpooling,池化层:对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面进行特征压缩,提取主要特征
#keras.layers.pooling.Maxpooling2D(pool_size = (2,2), strides = None, padding = 'valid')
#Activation层:keras.layers.core.Activation(activation),激活函数可以为:softmax, softplus, softsign, relu, sigmoid, hard_sigmoid, linear等
#Droupout层:keras.layers.core.Dropout(p)
#dropout将在训练过程中每次更新参数随机断开一定的百分比(p)的输入神经元连接,防止过拟合
#flatttern全连接层:keras.layers.core.Flattern()将输入压平,用于卷积层和全连接层的过渡
#Dense层全连接层:keras.layers