策略模式

策略模式的定义是:定义一系列的算法,把它们一个个封装起来,并且使他们可以相互替换。
很多公司的年终奖都是与绩效有关的,假如绩效S的4倍工资,A的3倍,B的两倍,写一个函数计算员工的年终奖,最初我们的设计可能是这样的:

var calculateBonus = function (level, salary) {
	if (level === 'S') {
		return salary * 4;
	}
	if (level === 'A') {
		return salary * 3;
	}
	if (level === 'B') {
		return salary * 2;
	}
};

calculateBonus('B', 2000) // 输出4000

这段代码中有大量的if…else…语句,我们使用策略模式重构这段代码:

var strategies = {
	"S": function (salary) {
		return salary * 4;
	},
	"A": function (salary) {
		return salary * 3;
	},
	"B": function (salary) {
		return salary * 2;
	},
};
var calculateBonus = function (level, salary) {
	return strategies[level](salary)
};

console.log(calculateBonus('S', 2000)); //输出:8000
console.log(calculateBonus('A', 1000)); //输出:3000

重构后的代码,我们把各种策略的算法分离开来,在计算的时候可以通过传入不同的参数选取不同的策略,这样以后也可以新增其它策略,调用的时候也很方便。

策略模式的优缺点

优点:
a.策略模式利用组合、委托和多态等技术和思想,可以有效地避免多重条件判断语句。
b.策略模式提供了对开放-封闭原则的完美支持,将算法封装在独立的strategy中,使得它们易于切换,易于理解,易于扩展。
c.策略模式中的算法也可以复用在系统的其他地方,从而避免许多重复的复制黏贴工作。
d.在策略模式中利用组合和委托来让Context拥有执行算法的能力,这也是继承的一种更轻便的替代方案。
缺点:
会增加策略对象;
要了解所有策略的不同,违反最少知识原则。

安卓期末大作业—Android图书管理应用源代码(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—And
本文以电动汽车销售策略为研究对象,综合运用层次分析法、决策树、皮尔逊相关性分析、BP神经网络及粒子群优化等多种方法,深入探讨了影响目标客户购买电动汽车的因素及相应的销售策略。研究结果显示,客户对合资品牌电动汽车的满意度为78.0887,对自主品牌的满意度为77.7654,对新势力品牌的满意度为77.0078。此外,研究还发现电池性能、经济性、城市居住年限、居住区域、工作单位、职务、家庭年收入、个人年收入、家庭可支配收入、房贷占比、车贷占比等因素对电动汽车销量存在显著影响。通过BP神经网络对目标客户的购买意愿进行预测,其预测数据拟合程度超过80%,且与真实情况高度接近。基于研究结果,本文为销售部门提出了提高销量的建议,包括精准定位尚未购买电动汽车的目标客户群体,制定并实施更具针对性的销售策略,在服务难度提升不超过5%的前提下,选择实施最具可行性和针对性的销售方案。 在研究过程中,层次分析法被用于对目标客户购买电动汽车的影响因素进行系统分析与评价;决策树模型则用于对缺失数据进行预测填充,以确保数据的完整性和准确性;BP神经网络用于预测目标客户的购买意愿,并对其预测效果进行评估;粒子群优化算法对BP神经网络模型进行优化,有效提升了模型的稳定性和预测能力;皮尔逊相关性分析用于探究不同因素与购买意愿之间的相关性。通过这些方法的综合运用,本文不仅揭示了影响电动汽车销量的关键因素,还为销售策略的优化提供了科学依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值