目前的工作关于数据分类和图像识别,基础的算法题也是越来越生疏,在此记录时刻提醒自己是个菜鸟
题目一:冒泡排序
def bubble_sort(alist):
for j in range(len(alist)-1,0,-1):
# j表示每次遍历需要比较的次数,是逐渐减小的
for i in range(j):
if alist[i] > alist[i+1]:
alist[i], alist[i+1] = alist[i+1], alist[i]
li = [54,26,93,17,77,31,44,55,20]
bubble_sort(li)
print(li)
题目二:选择排序
def selection_sort(alist):
n = len(alist)
# 需要进行n-1次选择操作
for i in range(n-1):
# 记录最小位置
min_index = i
# 从i+1位置到末尾选择出最小数据(找出索引)
for j in range(i+1, n):
if alist[j] < alist[min_index]:
min_index = j
# 如果选择出的数据不在正确位置,进行交换
if min_index != i:#(数据交换)
alist[i], alist[min_index] = alist[min_index], alist[i]
alist = [54,226,93,17,77,31,44,55,20]
selection_sort(alist)
print(alist)
题目三:快速排序
def quick_sort(alist, start, end):
# 递归的退出条件
if start >= end:
return
# 设定起始元素为要寻找位置的基准元素
mid = alist[start]
# low为序列左边的由左向右移动的游标
low = start
# high为序列右边的由右向左移动的游标
high = end
while low < high:
# 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
while low < high and alist[high] >= mid:
high -= 1
# 将high指向的元素放到low的位置上
alist[low] = alist[high]
# 如果low与high未重合,low指向的元素比基准元素小,则low向右移动
while low < high and alist[low] < mid:
low += 1
# 将low指向的元素放到high的位置上
alist[high] = alist[low]
# 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
# 将基准元素放到该位置
alist[low] = mid
# 对基准元素左边的子序列进行快速排序
quick_sort(alist, start, low-1)
# 对基准元素右边的子序列进行快速排序
quick_sort(alist, low+1, end)
alist = [54,26,93,17,77,31,44,55,20] quick_sort(alist,0,len(alist)-1)
print(alist)
题目四:互满数
如果有两个数,每个数的所有约数(除它本身以外)的和正好等于对方,则称这两个数互满数,求出3000内所有的互满数
def Sum(n):
sum=0
for i in range(1,n):
if n%i==0:
sum+=i
return sum
print ("互满数为:")
for j in range(1,3000):
k=Sum(j)
if k>j and Sum(k)==j:
print (j,"和",k)
题目五:无序表查找
最好情况是在第一个位置就找到了,此为O(1);最坏情况在最后一个位置才找到,此为O(n);所以平均查找次数为(n+1)/2。最终时间复杂度为O(n)
def sequential_search(lis, key):
length = len(lis)
for i in range(length):
if lis[i] == key:
return i
else:
return False
if __name__ == '__main__':
LIST = [1, 5, 8, 123, 22, 54, 7, 99, 300, 222]
result = sequential_search(LIST, 123)
print(result)
题目六:针对有序查找表的二分查找算法
时间复杂度O(l