这篇讲的好好 离线LCA(Tarjan)算法详解
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#define LL long long
#define mem(a, b) memset(a, b, sizeof(a))
#define N 50010
#define MOD
using namespace std;
int ver[N*2], Next[2*N], edge[N*2], head[N];
int fa[N], d[N], v[N], lca[N], ans[N];
vector<int> query[N], query_id[N];
int T, n, m, tot, t;
void add(int x, int y, int z) {//邻接表
ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot;
}
void add_query(int x, int y, int id) {//离线纪律每个询问,记录询问x,y,记录是第几次询问
query[x].push_back(y), query_id[x].push_back(id);
query[y].push_back(x), query_id[y].push_back(id);
}
int get(int x) {//并查集找父节点
if (x == fa[x]) return x;
return fa[x] = get(fa[x]);
}
void tarjan(int x) {
v[x] = 1;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];//子节点
if (v[y]) continue;//如果该子节点被访问过,就不访问
d[y] = d[x] + edge[i];//更新距离
tarjan(y);//往下访问该节点的子节点
fa[y] = x;//记录y的父节点是x
}
for (int i = 0; i < query[x].size(); i++) {//如果有关于当前节点的询问
int y = query[x][i], id = query_id[x][i];//询问x与y之间的距离
if (v[y] == 2) {//如果y已经回溯
int lca = get(y);//找到y当前的父节点,也就是他们的LCA
ans[id] = min(ans[id], d[x] + d[y] - 2*d[lca]);
}
}
v[x] = 2;//把v[x]的值该为2,表示该节点访问完毕回溯
}
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
head[i] = 0, fa[i] = i, v[i] = 0;
query[i].clear(), query_id[i].clear();
}
tot = 0;
for (int i = 1; i < n; i++) {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
add(x, y, z), add(y, x, z);
}
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
if(x == y) ans[i] = 0;
else {
add_query(x, y, i);
ans[i] = 1 << 30;
}
}
tarjan(1);
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
}