Placeholder 传入值

本文深入讲解TensorFlow中Placeholder的作用及使用方法,通过实例演示如何利用Placeholder实现数据输入,包括定义类型、创建乘法运算及通过Session运行计算结果。
部署运行你感兴趣的模型镜像

声明

来源于莫烦Python:Placeholder 传入值


代码

import tensorflow as tf

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1, input2)

with tf.Session() as sess:
    print(sess.run(output, feed_dict={input1: [7.], input2: [2.]}))

结果为: [14.]


代码释义

placeholder 是 Tensorflow 中的占位符,暂时储存变量.

Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 然后以这种形式传输数据sess.run(***, feed_dict={input: **}).

import tensorflow as tf

#在 Tensorflow 中需要定义 placeholder 的 type ,一般为 float32 形式
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

# mul = multiply 是将input1和input2 做乘法运算,并输出为 output 
ouput = tf.multiply(input1, input2)

接下来, 传值的工作交给了 sess.run() , 需要传入的值放在了feed_dict={} 并一一对应每一个 input. placeholderfeed_dict={} 是绑定在一起出现的。

with tf.Session() as sess:
    print(sess.run(ouput, feed_dict={input1: [7.], input2: [2.]}))

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值