过拟合和欠拟合解决办法有哪些

本文探讨了过拟合和欠拟合的解决办法,包括正则化、剪枝、权值共享、增加噪声、BM算法、Bagging和Boosting、Dropout等。此外,还介绍了Mini-Batch与SGD的区别以及在实际应用中的选择,以及交叉验证和回归模型的评价指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    1.过拟合和欠拟合解决办法有哪些


      ①正则化是机器学习中最常见的过拟合解决方法,在损失函数中加入正则项来惩罚模型的参数,以此来降低模型的复杂度,常见的添加正则项的正则化技术有L1,L2正则化。
      ②剪枝是决策树中一种控制过拟合的方法,我们知道决策树是一种非常容易陷入过拟合的算法,剪枝处理主要有预剪枝和后剪枝这两种,常见的是两种方法一起使用。预剪枝通过在训练过程中控制树深、叶子节点数、叶子节点中样本的个数等来控制树的复杂度。后剪枝则是在训练好树模型之后,采用交叉验证的方式进行剪枝以找到最优的树模型。
      ③权值共享最常见的就是在卷积神经网络中,权值共享的目的旨在减小模型中的参数,同时还能较少计算量。在循环神经网络中也用到了权值共享
      ④增加噪声是深度学习中的一种避免过拟合的方法(没办法,深度学习模型太复杂,容易过拟合),添加噪声的途径有很多,可以在输入数据上添加,增大数据的多样性,可以在权值上添加噪声,这种方法类似于L2正则化。
      ⑤BM算法是一种非常有用的正则化方法,而且可以让大型的卷积神经网络快速收敛,同时还能提高分类的准确率,而且可以不需要使用局部响应归一化处理,也可以不需要加入Dropout。BM算法会将每一层的输入值做归一化处理,并且会重构归一化处理之后的数据,确保数据的分布不会发生变化。
      ⑥Bagging和Boosting是机器学习中的集成方法,多个模型的组合可以弱化每个模型中的异常点的影响,保留模型之间的通性,弱化单个模型的特性。
      ⑦Dropout是深度学习中最常用的控制过拟合的方法,主要用在全连接层处。Dropout方法是在一定的概率上(通常设置为0.5,原因是此时随机生成的网络结构最多)隐式的去除网络中的神经元。Dropout控制过拟合的思想和机器学习中的集成方法中的bagging类似,在每个batch更新的网络结构都有所不同,也就相当于在训练时有很多个不同的子网络,在每次迭代时dropout的神经元都不一样,因此对于整个模型参数而言,每次都会有一些参数不被训练到。Dropout会导致网络的训练速度慢2、3倍,而且数据小的时候,Dropout的效果并不会太好。因此只会在大型网络上使用。

   2. Mini-Batch与SGD

原本的梯度下降算法,在每一次的迭代中,要把所有的数据都进行计算再取平均,那如果你的数据量特别大的话,每进行一次迭

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值