3.1.5 泛型函数
在类似python的动态类型语言中,通常需要基于参数的类型完成稍有不同的操作,特别是在处理元素列表与单个元素的差别时。直接检查参数的类型固然很简单,但是有些情况下,行为差异可能被隔离到单个的函数中,对于这些情况,functools提供了singledispatch()修饰符来注册一组泛型函数(generic function)可以根据函数第一个参数的类型自动切换。
import functools
@functools.singledispatch
def myfunc(arg):
print('default myfunc({!r})'.format(arg))
@myfunc.register(int)
def myfunc_int(arg):
print('myfunc_int({})'.format(arg))
@myfunc.register(list)
def myfunc_list(arg):
print('myfunc_list()')
for item in arg:
print(' {}'.format(item))
myfunc('string argument')
myfunc(1)
myfunc(2.3)
myfunc(['a','b','c'])
新函数的register()属性相当于另一个修饰符,用于注册替代现实。用singledispatch()包装的第一个函数是默认现实,在未指定其他类型特定函数时就使用这个默认实现,在这个例子中特定类型就是float.
运行结果:
没有找到这个类型的完全匹配时,会计算继承顺序,并使用最接近的匹配类型。
import functools
class A:
pass
class B(A):
pass
class C(A):
pass
class D(B):
pass
class E(C,B):
pass
@functools.singledispatch
def myfunc(arg):
print('default myfunc({})'.format(arg.__class__.__name__))
@myfunc.register(A)
def myfunc_A(arg):
print('myfunc_A({})'.format(arg.__class__.__name__))
@myfunc.register(B)
def myfunc_B(arg):
print('myfunc_B({})'.format(arg.__class__.__name__))
@myfunc.register(C)
def myfunc_C(arg):
print('myfunc_C({})'.format(arg.__class__.__name__))
myfunc(A())
myfunc(B())
myfunc(C())
myfunc(D())
myfunc(E())
在这个例子中,类D和E与已注册的任何泛型函数都不完全匹配,所选择的函数取决于类层次结构。
运行结果: