数据结构与算法学习---数据结构篇(树a)(默然回首,夯实基础)

本文深入探讨了二叉树这一重要数据结构,包括基本定义、相关术语、二叉查找树的创建与操作,以及遍历方法。文章还介绍了如何解决特定问题,如折纸问题,展示了二叉树在实际问题解决中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、二叉树入门

之前我们实现的符号表中,不难看出,符号表的增删查操作,随着元素个数N的增多,其耗时也是线性增多的,时间复杂度都是O(n),为了提高运算效率,接下来我们学习树这种数据结构。

1.1树的基本定义

树是我们计算机中非常重要的一种数据结构,同时使用树这种数据结构,可以描述现实生活中的很多事物,例如家谱、单位的组织架构、等等。
树是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
在这里插入图片描述
树具有以下特点:
1.每个结点有零个或多个子结点;
2.没有父结点的结点为根结点;
3.每一个非根结点只有一个父结点;
4.每个结点及其后代结点整体上可以看做是一棵树,称为当前结点的父结点的一个子树;

1.2 树的相关术语

结点的度:
一个结点含有的子树的个数称为该结点的度;
叶结点:
度为0的结点称为叶结点,也可以叫做终端结点
分支结点:
度不为0的结点称为分支结点,也可以叫做非终端结点
结点的层次:
从根结点开始,根结点的层次为1,根的直接后继层次为2,以此类推
结点的层序编号:
将树中的结点,按照从上层到下层,同层从左到右的次序排成一个线性序列,把他们编成连续的自然数。
树的度:
树中所有结点的度的最大值。
树的高度(深度):
树中结点的最大层次
森林:
m(m>=0)个互不相交的树的集合,将一颗非空树的根结点删去,树就变成一个森林;给森林增加一个统一的根结点,森林就变成一棵树
在这里插入图片描述
孩子结点:
一个结点的直接后继结点称为该结点的孩子结点
双亲结点(父结点):
一个结点的直接前驱称为该结点的双亲结点
兄弟结点:
同一双亲结点的孩子结点间互称兄弟结点

1.3 二叉树的基本定义

二叉树就是度不超过2的树(每个结点最多有两个子结点)
在这里插入图片描述
满二叉树:
一个二叉树,如果每一个层的结点树都达到最大值,则这个二叉树就是满二叉树。
在这里插入图片描述
完全二叉树:
叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树。
在这里插入图片描述

1.4 二叉查找树的创建

1.4.1二叉树的结点类

根据对图的观察,我们发现二叉树其实就是由一个一个的结点及其之间的关系组成的,按照面向对象的思想,我们设计一个结点类来描述结点这个事物。
结点类API设计:
在这里插入图片描述
代码实现:

private class Node<Key,Value>{
     //存储键
     public Key key;
     //存储值
     private Value value;
     //记录左子结点
     public Node left;
     //记录右子结点
     public Node right;
 
     public Node(Key key, Value value, Node left, Node right) {
         this.key = key;
         this.value = value;
         this.left = left;
         this.right = right;
     }
 }

1.4.2 二叉查找树API设计

在这里插入图片描述

1.4.3 二叉查找树实现

插入方法put实现思想:
1.如果当前树中没有任何一个结点,则直接把新结点当做根结点使用
2.如果当前树不为空,则从根结点开始:
2.1如果新结点的key小于当前结点的key,则继续找当前结点的左子结点;
2.2如果新结点的key大于当前结点的key,则继续找当前结点的右子结点;
2.3如果新结点的key等于当前结点的key,则树中已经存在这样的结点,替换该结点的value值即可。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
查询方法get实现思想:
从根节点开始:
1.如果要查询的key小于当前结点的key,则继续找当前结点的左子结点;
2.如果要查询的key大于当前结点的key,则继续找当前结点的右子结点;
3.如果要查询的key等于当前结点的key,则树中返回当前结点的value。
删除方法delete实现思想:
1.找到被删除结点;
2.找到被删除结点右子树中的最小结点minNode
3.删除右子树中的最小结点
4.让被删除结点的左子树称为最小结点minNode的左子树,让被删除结点的右子树称为最小结点minNode的右子树
5.让被删除结点的父节点指向最小结点minNode
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
代码:

//二叉树代码
public class BinaryTree<Key extends Comparable<Key>, Value> {
    //记录根结点
    private Node root;
    //记录树中元素的个数
    private int N;
 
    //获取树中元素的个数
    public int size() {
        return N;
    }
 
    //向树中添加元素key-value
    public void put(Key key, Value value) {
        root = put(root, key, value);
    }
 
    //向指定的树x中添加key-value,并返回添加元素后新的树
    private Node put(Node x, Key key, Value value) {
        if (x == null) {
            //个数+1
            N++;
            return new Node(key, value, null, null);
        }
        int cmp = key.compareTo(x.key);
        if (cmp > 0) {
            //新结点的key大于当前结点的key,继续找当前结点的右子结点
            x.right = put(x.right, key, value);
        } else if (cmp < 0) {
            //新结点的key小于当前结点的key,继续找当前结点的左子结点
            x.left = put(x.left, key, value);
        } else {
            //新结点的key等于当前结点的key,把当前结点的value进行替换
            x.value = value;
        }
        return x;
    }
 
    //查询树中指定key对应的value
    public Value get(Key key) {
        return get(root, key);
    }
 
    //从指定的树x中,查找key对应的值
    public Value get(Node x, Key key) {
        if (x == null) {
            return null;
        }
        int cmp = key.compareTo(x.key);
        if (cmp > 0) {
            //如果要查询的key大于当前结点的key,则继续找当前结点的右子结点;
            return get(x.right, key);
        } else if (cmp < 0) {
            //如果要查询的key小于当前结点的key,则继续找当前结点的左子结点;
            return get(x.left, key);
        } else {
            //如果要查询的key等于当前结点的key,则树中返回当前结点的value。
            return x.value;
        }
    }
 
    //删除树中key对应的value
    public void delete(Key key) {
        root = delete(root, key);
    }
 
    //删除指定树x中的key对应的value,并返回删除后的新树
    public Node delete(Node x, Key key) {
        if (x == null) {
            return null;
        }
 
        int cmp = key.compareTo(x.key);
        if (cmp > 0) {
            //新结点的key大于当前结点的key,继续找当前结点的右子结点
            x.right = delete(x.right, key);
        } else if (cmp < 0) {
            //新结点的key小于当前结点的key,继续找当前结点的左子结点
            x.left = delete(x.left, key);
        } else {
            //新结点的key等于当前结点的key,当前x就是要删除的结点
            //1.如果当前结点的右子树不存在,则直接返回当前结点的左子结点
            if (x.right == null) {
                return x.left;
            }
            //2.如果当前结点的左子树不存在,则直接返回当前结点的右子结点
            if (x.left == null) {
                return x.right;
            }
            //3.当前结点的左右子树都存在
            //3.1找到右子树中最小的结点
            Node minNode = x.right;
            while (minNode.left != null) {
                minNode = minNode.left;
            }
            //3.2删除右子树中最小的结点
            Node n = x.right;
            while (n.left != null) {
                if (n.left.left == null) {
                    n.left = null;
                } else {
                    n = n.left;
                }
            }
 
            //3.3让被删除结点的左子树称为最小结点minNode的左子树,让被删除结点的右子树称为最小结点
minNode的右子树
            minNode.left = x.left;
            minNode.right = x.right;
            //3.4让被删除结点的父节点指向最小结点minNode
            x = minNode;
            //个数-1
            N--;
        }
        return x;
    }
 
    private class Node {
        //存储键
        public Key key;
        //存储值
        private Value value;
        //记录左子结点
        public Node left;
        //记录右子结点
        public Node right;
 
        public Node(Key key, Value value, Node left, Node right) {
            this.key = key;
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }
}
 
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        BinaryTree<Integer, String> bt = new BinaryTree<>();
        bt.put(4, "二哈");
        bt.put(1, "张三");
        bt.put(3, "李四");
        bt.put(5, "王五");
        System.out.println(bt.size());
        bt.put(1,"老三");
        System.out.println(bt.get(1));
        System.out.println(bt.size());
        bt.delete(1);
        System.out.println(bt.size());
           }
}

1.4.4 二叉查找树其他便捷方法

1.4.4.1 查找二叉树中最小的键

在某些情况下,我们需要查找出树中存储所有元素的键的最小值,比如我们的树中存储的是学生的排名和姓名数据,那么需要查找出排名最低是多少名?这里我们设计如下两个方法来完成:
在这里插入图片描述

//找出整个树中最小的键
    public Key min(){
        return min(root).key;
    }
 
    //找出指定树x中最小的键所在的结点
    private Node min(Node x){
        if (x.left!=null){
            return min(x.left);
        }else{
            return x;
        }
    }

1.4.4.2 查找二叉树中最大的键

在某些情况下,我们需要查找出树中存储所有元素的键的最大值,比如比如我们的树中存储的是学生的成绩和学生的姓名,那么需要查找出最高的分数是多少?这里我们同样设计两个方法来完成:
在这里插入图片描述

//找出整个树中最大的键
    public Key max(){
        return max(root).key;
    }
 
    //找出指定树x中最大键所在的结点
    public Node max(Node x){
        if (x.right!=null){
            return max(x.right);
        }else{
            return x;
        }
    }

1.5 二叉树的基础遍历

很多情况下,我们可能需要像遍历数组数组一样,遍历树,从而拿出树中存储的每一个元素,由于树状结构和线性结构不一样,它没有办法从头开始依次向后遍历,所以存在如何遍历,也就是按照什么样的搜索路径进行遍历的问题。
在这里插入图片描述
我们把树简单的画作上图中的样子,由一个根节点、一个左子树、一个右子树组成,那么按照根节点什么时候被访问,我们可以把二叉树的遍历分为以下三种方式:
1.前序遍历;
先访问根结点,然后再访问左子树,最后访问右子树
2.中序遍历;
先访问左子树,中间访问根节点,最后访问右子树
3.后序遍历;
先访问左子树,再访问右子树,最后访问根节点
如果我们分别对下面的树使用三种遍历方式进行遍历,得到的结果如下:
在这里插入图片描述

1.5.1 前序遍历

我们在4.4中创建的树上,添加前序遍历的API:

public Queue<Key> preErgodic():使用前序遍历,获取整个树中的所有键
private void preErgodic(Node x,Queue<Key> keys):使用前序遍历,把指定树x中的所有键放入到keys队列中

实现过程中,我们通过前序遍历,把,把每个结点的键取出,放入到队列中返回即可。
实现步骤:
1.把当前结点的key放入到队列中;
2.找到当前结点的左子树,如果不为空,递归遍历左子树
3.找到当前结点的右子树,如果不为空,递归遍历右子树
代码:

//使用前序遍历,获取整个树中的所有键
public Queue<Key> preErgodic(){
    Queue<Key> keys = new Queue<>();
    preErgodic(root,keys);
    return keys;
}
 
//使用前序遍历,把指定树x中的所有键放入到keys队列中
private void preErgodic(Node x,Queue<Key> keys){
    if (x==null){
        return;
    }
    //1.把当前结点的key放入到队列中;
    keys.enqueue(x.key);
    //2.找到当前结点的左子树,如果不为空,递归遍历左子树
    if (x.left!=null){
        preErgodic(x.left,keys);
    }
    //3.找到当前结点的右子树,如果不为空,递归遍历右子树
    if (x.right!=null){
        preErgodic(x.right,keys);
    }
}
 
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        BinaryTree<String, String> bt = new BinaryTree<>();
        bt.put("E", "5");
        bt.put("B", "2");
        bt.put("G", "7");
        bt.put("A", "1");
        bt.put("D", "4");
        bt.put("F", "6");
        bt.put("H", "8");
        bt.put("C", "3");
 
        Queue<String> queue = bt.preErgodic();
        for (String key : queue) {
            System.out.println(key+"="+bt.get(key));
        }
 
    }
}

1.5.2 中序遍历

我们在4.4中创建的树上,添加前序遍历的API:

public Queue<Key> midErgodic():使用中序遍历,获取整个树中的所有键
private void midErgodic(Node x,Queue<Key> keys):使用中序遍历,把指定树x中的所有键放入到keys队列

实现步骤:
1.找到当前结点的左子树,如果不为空,递归遍历左子树
2.把当前结点的key放入到队列中;
3.找到当前结点的右子树,如果不为空,递归遍历右子树
代码:

//使用中序遍历,获取整个树中的所有键
 public Queue<Key> midErgodic(){
     Queue<Key> keys = new Queue<>();
     midErgodic(root,keys);
     return keys;
 }
 
 //使用中序遍历,把指定树x中的所有键放入到keys队列中
 private void midErgodic(Node x,Queue<Key> keys){
     if (x==null){
         return;
     }
     //1.找到当前结点的左子树,如果不为空,递归遍历左子树
     if (x.left!=null){
         midErgodic(x.left,keys);
     }
     //2.把当前结点的key放入到队列中;
     keys.enqueue(x.key);
     //3.找到当前结点的右子树,如果不为空,递归遍历右子树
     if (x.right!=null){
         midErgodic(x.right,keys);
     }
 }
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        BinaryTree<String, String> bt = new BinaryTree<>();
        bt.put("E", "5");
        bt.put("B", "2");
        bt.put("G", "7");
        bt.put("A", "1");
        bt.put("D", "4");
        bt.put("F", "6");
        bt.put("H", "8");
        bt.put("C", "3");
 
        Queue<String> queue = bt.midErgodic();
        for (String key : queue) {
            System.out.println(key+"="+bt.get(key));
        }
 
    }
}

1.5.3 后序遍历

我们在4.4中创建的树上,添加前序遍历的API:

public Queue<Key> afterErgodic():使用后序遍历,获取整个树中的所有键
private void afterErgodic(Node x,Queue<Key> keys):使用后序遍历,把指定树x中的所有键放入到keys队列

实现步骤:
1.找到当前结点的左子树,如果不为空,递归遍历左子树
2.找到当前结点的右子树,如果不为空,递归遍历右子树
3.把当前结点的key放入到队列中;
代码:

//使用后序遍历,获取整个树中的所有键
public Queue<Key> afterErgodic(){
    Queue<Key> keys = new Queue<>();
    afterErgodic(root,keys);
    return keys;
}
 
//使用后序遍历,把指定树x中的所有键放入到keys队列中
private void afterErgodic(Node x,Queue<Key> keys){
    if (x==null){
        return;
    }
    //1.找到当前结点的左子树,如果不为空,递归遍历左子树
    if (x.left!=null){
        afterErgodic(x.left,keys);
    }
    //2.找到当前结点的右子树,如果不为空,递归遍历右子树
    if (x.right!=null){
        afterErgodic(x.right,keys);
    }
    //3.把当前结点的key放入到队列中;
    keys.enqueue(x.key);
}
 
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        BinaryTree<String, String> bt = new BinaryTree<>();
        bt.put("E", "5");
        bt.put("B", "2");
        bt.put("G", "7");
        bt.put("A", "1");
        bt.put("D", "4");
        bt.put("F", "6");
        bt.put("H", "8");
        bt.put("C", "3");
 
        Queue<String> queue = bt.afterErgodic();
        for (String key : queue) {
            System.out.println(key+"="+bt.get(key));
        }
 
    }
}

1.6 二叉树的层序遍历

所谓的层序遍历,就是从根节点(第一层)开始,依次向下,获取每一层所有结点的值,有二叉树如下:
在这里插入图片描述
那么层序遍历的结果是:EBGADFHC
我们在4.4中创建的树上,添加层序遍历的API:

public Queue<Key> layerErgodic():使用层序遍历,获取整个树中的所有键

实现步骤:
1.创建队列,存储每一层的结点;
2.使用循环从队列中弹出一个结点:
2.1获取当前结点的key;
2.2如果当前结点的左子结点不为空,则把左子结点放入到队列中
2.3如果当前结点的右子结点不为空,则把右子结点放入到队列中
在这里插入图片描述
在这里插入图片描述
代码:

//使用层序遍历得到树中所有的键
 public Queue<Key> layerErgodic(){
     Queue<Key> keys = new Queue<>();
     Queue<Node> nodes = new Queue<>();
     nodes.enqueue(root);
     while(!nodes.isEmpty()){
         Node x = nodes.dequeue();
         keys.enqueue(x.key);
         if (x.left!=null){
             nodes.enqueue(x.left);
         }
         if (x.right!=null){
             nodes.enqueue(x.right);
         }
     }
    return keys;
 }
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        BinaryTree<String, String> bt = new BinaryTree<>();
        bt.put("E", "5");
        bt.put("B", "2");
        bt.put("G", "7");
        bt.put("A", "1");
        bt.put("D", "4");
        bt.put("F", "6");
        bt.put("H", "8");
        bt.put("C", "3");
 
        Queue<String> queue = bt.layerErgodic();
        for (String key : queue) {
            System.out.println(key+"="+bt.get(key));
        }
 
    }
} 

1.7 二叉树的最大深度问题

需求:
给定一棵树,请计算树的最大深度(树的根节点到最远叶子结点的最长路径上的结点数);
在这里插入图片描述
上面这棵树的最大深度为4
实现:
我们在1.4中创建的树上,添加如下的API求最大深度:

public int maxDepth():计算整个树的最大深度
private int maxDepth(Node x):计算指定树x的最大深度

实现步骤:
1.如果根结点为空,则最大深度为0;
2.计算左子树的最大深度;
3.计算右子树的最大深度;
4.当前树的最大深度=左子树的最大深度和右子树的最大深度中的较大者+1
代码:

//计算整个树的最大深度
public int maxDepth() {
    return maxDepth(root);
}
 
//计算指定树x的最大深度
private int maxDepth(Node x) {
    //1.如果根结点为空,则最大深度为0;
    if (x == null) {
        return 0;
    }
    int max = 0;
    int maxL = 0;
    int maxR = 0;
    //2.计算左子树的最大深度;
    if (x.left != null) {
        maxL = maxDepth(x.left);
    }
    //3.计算右子树的最大深度;
    if (x.right != null) {
        maxR = maxDepth(x.right);
    }
    //4.当前树的最大深度=左子树的最大深度和右子树的最大深度中的较大者+1
    max = maxL > maxR ? maxL + 1 : maxR + 1;
    return max;
}
 
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        BinaryTree<String, String> bt = new BinaryTree<>();
        bt.put("E", "5");
        bt.put("B", "2");
        bt.put("G", "7");
        bt.put("A", "1");
        bt.put("D", "4");
        bt.put("F", "6");
        bt.put("H", "8");
        bt.put("C", "3");
 
        int i = bt.maxDepth();
        System.out.println(i);
       }
}

1.8 折纸问题

需求:
请把一段纸条竖着放在桌子上,然后从纸条的下边向上方对折1次,压出折痕后展开。此时 折痕是凹下去的,即折痕突起的方向指向纸条的背面。如果从纸条的下边向上方连续对折2 次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕、下折痕和上折痕。
给定一 个输入参数N,代表纸条都从下边向上方连续对折N次,请从上到下打印所有折痕的方向 例如:N=1时,打印: down;N=2时,打印: down down up
在这里插入图片描述
分析:
我们把对折后的纸张翻过来,让粉色朝下,这时把第一次对折产生的折痕看做是根结点,那第二次对折产生的下折痕就是该结点的左子结点,而第二次对折产生的上折痕就是该结点的右子结点,这样我们就可以使用树型数据结构来描述对折后产生的折痕。
这棵树有这样的特点:
1.根结点为下折痕;
2.每一个结点的左子结点为下折痕;
3.每一个结点的右子结点为上折痕;
在这里插入图片描述
实现步骤:
1.定义结点类
2.构建深度为N的折痕树;
3.使用中序遍历,打印出树中所有结点的内容;
构建深度为N的折痕树:
1.第一次对折,只有一条折痕,创建根结点;
2.如果不是第一次对折,则使用队列保存根结点;
3.循环遍历队列:
3.1从队列中拿出一个结点;
3.2如果这个结点的左子结点不为空,则把这个左子结点添加到队列中;
3.3如果这个结点的右子结点不为空,则把这个右子结点添加到队列中;
3.4判断当前结点的左子结点和右子结点都不为空,如果是,则需要为当前结点创建一个值为down的左子结点,一个值为up的右子结点。
代码:

public class PaperFolding {
 
    public static void main(String[] args) {
        //构建折痕树
        Node tree = createTree(3);
 
        //遍历折痕树,并打印
        printTree(tree);
    }
 
    //3.使用中序遍历,打印出树中所有结点的内容;
    private static void printTree(Node tree) {
    if (tree==null){
            return;
        }
 
        printTree(tree.left);
        System.out.print(tree.item+",");
        printTree(tree.right);
    }
 
    //2.构建深度为N的折痕树;
    private static Node createTree(int N) {
        Node root = null;
        for (int i = 0; i <N ; i++) {
            if (i==0){
                //1.第一次对折,只有一条折痕,创建根结点;
                root = new Node("down",null,null);
            }else{
                //2.如果不是第一次对折,则使用队列保存根结点;
                Queue<Node> queue = new Queue<>();
                queue.enqueue(root);
                //3.循环遍历队列:
                while(!queue.isEmpty()){
                    //3.1从队列中拿出一个结点;
                    Node tmp = queue.dequeue();
                    //3.2如果这个结点的左子结点不为空,则把这个左子结点添加到队列中;
                    if (tmp.left!=null){
                        queue.enqueue(tmp.left);
                    }
                    //3.3如果这个结点的右子结点不为空,则把这个右子结点添加到队列中;
                    if (tmp.right!=null){
                        queue.enqueue(tmp.right);
                    }
                    //3.4判断当前结点的左子结点和右子结点都不为空,如果是,则需要为当前结点创建一个
值为down的左子结点,一个值为up的右子结点。
                    if (tmp.left==null && tmp.right==null){
                        tmp.left = new Node("down",null,null);
                        tmp.right = new Node("up",null,null);
                    }
                }
            }
        }
 
        return root;
    }
 
    //1.定义结点类
    private static class Node{
        //存储结点元素
        String item;
        //左子结点
        Node left;
        //右子结点
        Node right;
        public Node(String item, Node left, Node right) {
            this.item = item;
            this.left = left;
            this.right = right;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值