numpy练习笔记1

本文详细介绍NumPy库的基础使用,包括数组创建、属性获取、数据类型转换等基本操作,以及高级函数如数学运算、矩阵操作、统计分析等。通过实例演示了如何利用NumPy进行高效的数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np

lst = [[1,3,5],[2,4,6]]
print(type(lst))
np_lst = np.array(lst)
print(type(np_lst))
np_lst = np.array(lst,dtype = np.float32)
print(np_lst.shape)
print(np_lst.ndim)#维度
print(np_lst.dtype)
print(np_lst.itemsize)#每个元素的字节大小,64就是8,32就是4
print(np_lst.size)

输出结果:

<class 'list'>
<class 'numpy.ndarray'>
(2, 3)
2
float32
4
6

数组

print ('数组:')
print(np.zeros([2,4]))
print(np.ones([6,4]))

rand

print ('rand:')
print(np.random.rand(2,4))

randint

print ('randint:')
print(np.random.randint(1,10,3))#生成3个1——10的随机整数

randn 标准正态随机数

print ('randn:')
print(np.random.randn(2,4))

choice

print('choice:')
print(np.random.choice([10,20,30,50,46,85],3))#在这中间随机选择3个数字

distribute

print('disritube:')
print(np.random.beta(1,10,100))#生成贝塔分布

输出结果:

数组:
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
rand:
[[ 0.51134183  0.68640869  0.30745971  0.42751586]
 [ 0.39394628  0.51500959  0.93783152  0.33093498]]
randint:
[7 7 6]
randn:
[[-0.0629641   1.81308963  0.17863036  0.2995394 ]
 [ 0.38179353 -1.09422534 -0.04260484  0.12850522]]
choice:
[50 30 46]
disritube:
[ 0.30105046  0.22466447  0.00312794  0.04867815  0.23824019  0.22276963
  0.06994241  0.08153077  0.04210733  0.15298111  0.13114783  0.19231987
  0.08590524  0.02384821  0.05994102  0.01940616  0.01914576  0.08006452
  0.09477109  0.03481951  0.17449212  0.06711711  0.18885787  0.03662316
  0.1226368   0.20623612  0.1371511   0.06301977  0.05377805  0.02044071
  0.07306211  0.00730291  0.02932294  0.0193199   0.02619412  0.0204607
  0.02536301  0.02602958  0.0815886   0.07754666  0.01302227  0.15267093
  0.08529373  0.00839241  0.08830106  0.04258077  0.06510606  0.08714733
  0.09652298  0.16992335  0.00873204  0.04909573  0.01785387  0.01237347
  0.08418552  0.24211199  0.0422243   0.1793361   0.0154549   0.00799404
  0.01506692  0.17877294  0.20004141  0.13304119  0.14527565  0.08852351
  0.05173086  0.02800703  0.10004384  0.05408717  0.0157574   0.18044461
  0.04537623  0.07583842  0.15127688  0.06006866  0.04503374  0.07682175
  0.00204775  0.13950375  0.0458627   0.13266404  0.06712269  0.03587277
  0.02672294  0.05953323  0.02113297  0.016502    0.20327103  0.04900302
  0.02238234  0.00264506  0.01121504  0.18968254  0.04769414  0.01039635
  0.0551518   0.06952842  0.09926505  0.00047308]

numpy操作

import numpy as np

#numpy的操作
print(np.arange(1,11).reshape([2,-1]))#5可以用-1代替
lst = np.arange(1,11).reshape([2,-1])
print('exp')
print(np.exp(lst))#自然指数
print('exp2')
print(np.exp2(lst))#自然指数的平方
print('sqrt:')
print(np.sqrt(lst))#开方
print('sin:')
print(np.sin(lst))
print ('log:')
print(np.log(lst))

print ('sum:')
lst1 = np.array([[[1,2,3,4],
                  [5,6,7,8]],
                [[9,10,11,12],
                 [13,14,15,16]],
                 [[17,18,19,20],
                 [21,22,23,24]]])
print ('axis=0:')
print(lst1.sum(axis=0))
print ('axis=1:')
print(lst1.sum(axis=1))
print ('axis=2:')
print(lst1.sum(axis=2))

print ('max:')
print ('无内容:')
print(lst1.max())
print ('axis=0:')
print(lst1.max(axis=0))
print ('axis=1:')
print(lst1.max(axis=1))
print ('axis=2:')
print(lst1.max(axis=2))

print ('add:')
lst2 = np.array([1,2,3,4])
lst3 = np.array([7,8,9,10])
print(lst2+lst3)

print('dot:')
print(np.dot(lst2.reshape([2,2]),lst3.reshape([2,2])))

print('concatenate追加:')
print (np.concatenate((lst2,lst3),axis=0))
print (np.concatenate((lst1,lst1),axis=1))
print('vstack:')
print(np.vstack((lst2,lst3)))
print('hstack:')
print(np.hstack((lst2,lst3)))
print('split:')
print(np.split(lst1,3))
print('copy:')
print(np.copy(lst1))

输出结果:

[[ 1  2  3  4  5]
 [ 6  7  8  9 10]]
exp
[[  2.71828183e+00   7.38905610e+00   2.00855369e+01   5.45981500e+01
    1.48413159e+02]
 [  4.03428793e+02   1.09663316e+03   2.98095799e+03   8.10308393e+03
    2.20264658e+04]]
exp2
[[    2.     4.     8.    16.    32.]
 [   64.   128.   256.   512.  1024.]]
sqrt:
[[ 1.          1.41421356  1.73205081  2.          2.23606798]
 [ 2.44948974  2.64575131  2.82842712  3.          3.16227766]]
sin:
[[ 0.84147098  0.90929743  0.14112001 -0.7568025  -0.95892427]
 [-0.2794155   0.6569866   0.98935825  0.41211849 -0.54402111]]
log:
[[ 0.          0.69314718  1.09861229  1.38629436  1.60943791]
 [ 1.79175947  1.94591015  2.07944154  2.19722458  2.30258509]]
sum:
axis=0:
[[27 30 33 36]
 [39 42 45 48]]
axis=1:
[[ 6  8 10 12]
 [22 24 26 28]
 [38 40 42 44]]
axis=2:
[[10 26]
 [42 58]
 [74 90]]
max:
无内容:
24
axis=0:
[[17 18 19 20]
 [21 22 23 24]]
axis=1:
[[ 5  6  7  8]
 [13 14 15 16]
 [21 22 23 24]]
axis=2:
[[ 4  8]
 [12 16]
 [20 24]]
add:
[ 8 10 12 14]
dot:
[[25 28]
 [57 64]]
concatenate追加:
[ 1  2  3  4  7  8  9 10]
[[[ 1  2  3  4]
  [ 5  6  7  8]
  [ 1  2  3  4]
  [ 5  6  7  8]]

 [[ 9 10 11 12]
  [13 14 15 16]
  [ 9 10 11 12]
  [13 14 15 16]]

 [[17 18 19 20]
  [21 22 23 24]
  [17 18 19 20]
  [21 22 23 24]]]
vstack:
[[ 1  2  3  4]
 [ 7  8  9 10]]
hstack:
[ 1  2  3  4  7  8  9 10]
split:
[array([[[1, 2, 3, 4],
        [5, 6, 7, 8]]]), array([[[ 9, 10, 11, 12],
        [13, 14, 15, 16]]]), array([[[17, 18, 19, 20],
        [21, 22, 23, 24]]])]
copy:
[[[ 1  2  3  4]
  [ 5  6  7  8]]

 [[ 9 10 11 12]
  [13 14 15 16]]

 [[17 18 19 20]
  [21 22 23 24]]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值