tf.squeeze()详解

本文介绍了TensorFlow中squeeze函数的使用,该函数用于移除张量中维度为1的部分。错误示例展示了当指定维度不为1时会抛出ValueError。示例展示了如何指定和不指定删除的维度,以及操作后的张量形状。
部署运行你感兴趣的模型镜像
squeeze(
    input,
    axis=None,
    name=None,
    squeeze_dims=None
)

该函数返回一个张量,这个张量是将原始input中所有维度为1的那些维都删掉的结果
axis可以用来指定要删掉的为1的维度,此处要注意指定的维度必须确保其是1,否则会报错 

>>>y = tf.squeeze(inputs, [0, 1], name='squeeze')
>>>ValueError: Can not squeeze dim[0], expected a dimension of 1, got 32 for 'squeeze' (op: 'Squeeze') with input shapes: [32,1,1,3].

 

#  't' 是一个维度是[1, 2, 1, 3, 1, 1]的张量
tf.shape(tf.squeeze(t))   # [2, 3], 默认删除所有为1的维度

# 't' 是一个维度[1, 2, 1, 3, 1, 1]的张量
tf.shape(tf.squeeze(t, [2, 4]))  # [1, 2, 3, 1],标号从零开始,只删掉了2和4维的1

转载自:https://www.jianshu.com/p/a21c0bc10a38 

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值