动态规划
class Solution {
public:
vector<int> getonezeros(string &str) {
vector<int> onezeros(2, 0);
for (auto s : str) {
if (s == '0') onezeros[0] += 1;
if (s == '1') onezeros[1] += 1;
}
return onezeros;
}
int findMaxForm(vector<string>& strs, int m, int n) {
int len = strs.size();
vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(m + 1, vector<int>(n + 1, 0)));
for (int i = 1; i < len + 1; i++) {
vector<int> onezero = getonezeros(strs[i - 1]);
int zeros = onezero[0], ones = onezero[1];
for (int j = 0; j < m + 1; j++) {
for (int k = 0; k < n + 1; k++) {
if (zeros <= j && ones <= k)
dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - zeros][k - ones] + 1);
else
dp[i][j][k] = dp[i - 1][j][k];
}
}
}
return dp[len][m][n];
}
};
滚动数组
递推公式:dp[m][n] = max(dp[m][n], dp[m - zeros][n - ones] + 1);
class Solution {
public:
vector<int> getonezeros(string &str) {
vector<int> onezeros(2, 0);
for (auto s : str) {
if (s == '0') onezeros[0] += 1;
if (s == '1') onezeros[1] += 1;
}
return onezeros;
}
int findMaxForm(vector<string>& strs, int m, int n) {
int len = strs.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
for (int i = 0; i < len ; i++) {
vector<int> onezero = getonezeros(strs[i]);
int zeros = onezero[0], ones = onezero[1];
for (int j = m; j >= zeros; j--) {
for (int k = n; k >= ones; k--) {
dp[j][k] = max(dp[j][k], dp[j - zeros][k - ones] + 1);
}
}
}
return dp[m][n];
}
};