OpenCV图像处理(五、傅里叶变换)

    傅里叶变换经常被用来分析不同滤波器的频率特性。可以使用2D傅里叶变换(DFT)分析图像的频域特性,实现DFT的一个快速算法被称为快速傅里叶变换(FFT)。

1. Numpy中的傅里叶变换

    函数np.fft.fft2()可以对信号进行频率转换,输出结果是一个复杂的数组。

  • 第一个参数是输入图像,要求灰度图;
  • 第二个参数是可选的,决定输出数组的大小;一般输出数组和输入数组一样大,但是如果输出图像比输入图像大,输入图像就需要在进行FFT前补0;如果小,输入图像会被切割。

1)将频率为0的部分(直流分量)从图像的左上角移动到图像中心

用np.fft.fftshift()实现,代码如下:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread("/~/logo.jpg", 0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnititude Spectrum'), plt.xticks([]), plt.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值