ElasticSearch系列——倒排索引核心原理快速揭秘


文章目录


ElasticSearch系列——主目录


假设有两个文档

doc1:I really liked my small dogs, and I think my mom also liked them.
doc2:He never liked any dogs, so I hope that my mom will not expect me to liked him.

分词,初步的倒排索引的建立

word		doc1		doc2

I			*			*
really		*
liked		*			*
my			*			*
small		*	
dogs		*
and			*
think		*
mom			*			*
also		*
them		*	
He						*
never					*
any						*
so						*
hope					*
that					*
will					*
not						*
expect					*
me						*
to						*
him						*

演示了一下倒排索引最简单的建立的一个过程

接下来搜索

但是 mother like little dog,不可能有任何结果

mother
like
little
dog

在上面的倒排表中没有对应的词汇

这个是不是我们想要的搜索结果???

绝对不是,因为在我们看来,mother和mom有区别吗?同义词,都是妈妈的意思。like和liked有区别吗?没有,都是喜欢的意思,只不过一个是现在时,一个是过去时。little和small有区别吗?同义词,都是小小的。dog和dogs有区别吗?狗,只不过一个是单数,一个是复数。

所以,normalization,建立倒排索引的时候,会执行的一个操作,也就是说对拆分出的各个单词进行相应的处理,以提升后面搜索的时候能够搜索到相关联的文档的概率

normalization 包括时态的转换,单复数的转换,同义词的转换,大小写的转换

mom —> mother
liked —> like
small —> little
dogs —> dog

重新建立倒排索引,加入normalization,再次用mother liked little dog搜索,就可以搜索到了

word		doc1		doc2

I			*			*
really		*
like		*			*			liked --> like
my			*			*
little		*						small --> little
dog			*			*			dogs --> dog						
and			*
think		*
mom			*			*
also		*
them		*	
He						*
never					*
any						*
so						*
hope					*
that					*
will					*
not						*
expect					*
me						*
to						*
him						*

mother like little dog,分词,normalization

mother	--> mom
like	--> like
little	--> little
dog	--> dog

doc1和doc2都会搜索出来

doc1:I really liked my small dogs, and I think my mom also liked them.
doc2:He never liked any dogs, so I hope that my mom will not expect me to liked him.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值