Self-Attention详解

Sequence数据的处理

Self-Attention是用来处理Sequence数据的。
输入是Vector Set(Sequence)。
比如:

  1. 输入是一段文字:每个字会对应一个vector。(编码方式:①one-hot编码;②word embedding)
  2. 输入是一段声音信号:设置window(一般window的大小是25ms),每个window中的声音信号作为一个vector。(例:如果window滑动的step=10ms,window大小是25ms,那么1s的声音信号可以转化为100个vector的集合)
  3. 输入是一个Graph:每个node是一个vector。(向量是node的特征)

输出是什么?

  1. 每个输入的vector对应一个label:词性标注任务
  2. 整个sequence输入一个label:情感分析、语者辨认
  3. 机器决定输出的label的个数(Seq2Seq任务):翻译

Sequence Labeling(输入和输出的大小一样)

希望网络可以考虑整个sequence的信息。

首先想到全连接网络,但是每个输入的sequence的长度是不确定的,因此如果想要使用全连接网路哈哈哈没法确定神经元的个数~~

所以,使用Self-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值