N_CLASSES=2#2个输出神经元 [1,0],[0,1]猫或者狗的概率 IMG_W=208#重新定义图片的尺寸 IMG_H=208 BATCH_SIZE=32#每批数据的大小 CAPACITY=256 MAX_STEP=12000#训练的步数 learning_rate=0.0001#学习率
saver=tf.train.Saver() sess.run(tf.global_variables_initializer()) coord=tf.train.Coordinator() threads=tf.train.start_queue_runners(sess=sess,coord=coord) try: for step in np.arange(MAX_STEP): if coord.should_stop(): break _,tra_loss,tra_acc=sess.run([train_op,train_loss,train_acc]) if step%50==0: print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0)) summary_str=sess.run(summary_op) train_writer.add_summary(summary_str,step) if step%2000==0 or (step+1)==MAX_STEP: checkpoint_path=os.path.join(logs_train_dir,'model.ckpt') saver.save(sess,checkpoint_path,global_step=step) except tf.errors.OutOfRangeError: print('Done training -- epoch limit reached') finally: coo