Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = “horse”, word2 = “ros”
Output: 3
Explanation:
horse -> rorse (replace ‘h’ with ‘r’)
rorse -> rose (remove ‘r’)
rose -> ros (remove ‘e’)
Example 2:
Input: word1 = “intention”, word2 = “execution”
Output: 5
Explanation:
intention -> inention (remove ‘t’)
inention -> enention (replace ‘i’ with ‘e’)
enention -> exention (replace ‘n’ with ‘x’)
exention -> exection (replace ‘n’ with ‘c’)
exection -> execution (insert ‘u’)
中文:给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
非常经典的题目。一般字符串求极值的题,第一要想到字符串的动态规划算法。
算法:
代码:
class Solution {
public:
int minDistance(string word1, string word2) {
int len1=word1.size();
int len2=word2.size();
vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1));
for (int i=0;i<=len1;i++) dp[i][0]=i;
for (int j=0;j<=len2;j++) dp[0][j]=j;
for(int i=1;i<=len1;i++){
for(int j=1;j<=len2;j++){
int diff;
if(word1[i-1]==word2[j-1])
diff=0;
else
diff=1;
int temp=min(dp[i-1][j]+1,dp[i][j-1]+1); //min一次只能求2个
dp[i][j]=min(temp,dp[i-1][j-1]+diff);
}
}
return dp[len1][len2];
}
};
语法注意:
1.二维数组的申请:
vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1));
2.min(a,b):即min一次只能求两个的最小值