基于决策树(Decision Tree)的bagging算法:随机森林(Random Forest)(包括具体代码)

重点先跑模型:
数据:
http://sofasofa.io/competition.php?id=1
代码:
需要修改一下文件的地址:
代码运行的时候一步一步来:

# -*- coding: utf-8 -*-
# import 常用包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 数据完整化和数据数值化
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import LabelEncoder

# 特征提取和特征选择
from sklearn.feature_selection import f_regression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.decomposition import PCA

# 数据归一化和数据标准化
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import Normalizer

# 数据分割
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold

# 模型构建
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgb

# 误差评估
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error

# 参数调节
from sklearn.model_selection import GridSearchCV

# -----------------------------------------------加载数据,数据处理,特征提取,特征选择------------------------------------------------------
# 加载数据
train = pd.read_csv('E:/dataset/reg/bike/train.csv')
test = pd.read_csv('E:/dataset/reg/bike/test.csv')
submit = pd.read_csv('E:/dataset/reg/bike/sample_submit.csv')

# ----------------------------------------------------------------------数据分割和模型使用-------------------------------------------------------------------------
predictors = ['city', 'hour', 'is_workday', 'weather', 'temp_1', 'temp_2', 'wind']
X_train, X_test, Y_train, Y_test = train_test_split(train[predictors], train["y"], test_size=0.2)
model = RandomForestRegres
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值