spark SQL 参数调优

本文探讨了Spark SQL中的参数`spark.sql.inMemoryColumnStorage.batchSize`的优化,解释了其默认值和调整时需要注意的内存管理。同时,介绍了推测执行(Speculative Execution)的概念,它是通过启动备份任务来加速作业执行的一种机制。文中提到了推测执行的触发条件,包括参数`spark.speculation.quantile`和`spark.speculation.multiplier`的设置,并概述了其工作流程。最后,给出了开启推测执行的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 spark.sql.codegen 默认值为false,当它设置为true时,Spark SQL会把每条查询的语句在运行时编译为java的二进制代码。这有什么作用呢?它可以提高大型查询的性能,但是如果进行小规模的查询的时候反而会变慢,就是说直接用查询反而比将它编译成为java的二进制代码快。所以在优化这个选项的时候要视情况而定。

2 spark.sql.inMemoryColumnStorage.compressed 默认值为false 它的作用是自动对内存中的列式存储进行压缩

3 spark.sql.inMemoryColumnStorage.batchSize 默认值为1000 这个参数代表的是列式缓存时的每个批处理的大小。如果将这个值调大可能会导致内存不够的异常,所以在设置这个的参数的时候得注意你的内存大小

4 spark.sql.parquet.compressed.codec 默认值为snappy 这个参数代表使用哪种压缩编码器。可选的选项包括uncompressed/snappy/gzip/lzo

uncompressed这个顾名思义就是不用压缩的意思




        推测执行(Speculative Execution)是指在分布式集群环境下,因为程序BUG,负载不均衡或者资源分布不均等原因,造成同一个job的多个task运行速度不一致,有的task运行速度明显慢于其他task(比如:一个job的某个ta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值