signature=04009eff4fcc01e26f9e8e217d1a4913,An Enhanced fractional Motion Estimation algorithm for HD...

该文探讨了在高清视频中,分数运动估计(FME)与Signature-Based FME算法结合使用时对质量的影响。研究比较了Fractional FME(FFME)与Enhanced FME(EFME)在假设它们具有相似计算复杂度和功率消耗情况下的结果质量。主要目标是在保持相同功率消耗的同时提升图像质量,或者在保持相同质量的前提下减少手持设备进行运动估计的功耗和成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

Motion estimation (ME) consumes the major part of time and power in both video compression standards - HEVC and H.264. This paper evaluates the impact of fractional motion estimation (FME) for HD videos if applied along with Signature Based FME algorithm, which targets Full Search quality. The paper compares the quality of results of Fractional FME (FFME) vs Enhanced FME (EFME) assuming they have similar computation complexity, hence power consumption. The main purpose is improving the image quality for the same power consumption or equivalently reducing cost and power for the same quality in handheld devices performing Motion Estimation. The algorithms used are an extension to one of the most efficient algorithms - HMDS.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值