广度优先遍历
思想:使用队列,每一层,先将自己遍历后,在将孩子进队列,左先右后。
def broad_travel(self, root, func):
queue = [root]
while queue:
node = queue.pop(0)
func(node.data)
if node.lchild:
queue.append(node.lchild)
if node.rchild:
queue.append(node.rchild)
深度优先遍历(非递归)
思想采用栈来保存先驱节点。
线序中序侯旭分开做。先序即遍历时第一次经过是就处理,中序是第二次,后续是第三次。

先序遍历:
思想:一直沿着树向左走,遍历自己的时候,同时将左右字节点入栈,由于栈是先入后出的,所以,要先压右孩子再压左孩子,初始值先将root节点入栈。
def deep_travel_first(self, root, func):
stack = [root]
last_pop=None
while stack:
node = stack.pop() #last item
func(node.data)
if node.rchild :
stack.append(node.rchild)
if node.lchild :
stack.append(node.lchild)
中序遍历
思想:一直沿着树向左走,如果左孩子为空,则pop自己,处理,然后将右孩子作为根节点,然后再继续向左走。

def deep_travel_middle(self, root, func):
stack = []
last_pop=None
while stack or root:
while root:
stack.append(root)
root = root.lchild
if stack:
node = stack.pop()
func(node.data)
root = node.rchild
后序遍历
思想: 后续遍历,顺序是:左右中,但是我们遍历都是从中间走向孩子节点,没法分开左右,解决办法:可以走中右中左的顺序,但是在第二次经过中的时候不做处理,然后,利用栈的属性,将其顺序逆置,得到左右中,一直向右走,然后走不动时,将左孩子设置为root,然后继续往右走。
def deep_travel_final(self, root, func):
stack = []
last_pop=None
result=[]
while stack or root:
while root:
stack.append(root)
result.append(root.data)
root = root.rchild
if stack:
node = stack.pop()
root = node.lchild
result=result[::-1] #reverse middle->right->left to left->right->middle
for dat in result:
func(dat)
整个代码:
class bNode:
def __init__(self, dat):
self.data = dat
self.lchild = None
self.rchild = None
class bTree:
def __init__(self):
self.root = None
# from left to right to insert
def insert(self, node):
if self.root == None:
self.root = node
return
cur_node = self.root #board travel
queue = [cur_node]
while queue :
node_itr = queue.pop(0)
if node_itr.lchild:
queue.append(node_itr.lchild)
else:
node_itr.lchild = node
return
if node_itr.rchild:
queue.append(node_itr.lchild)
else:
node_itr.rchild = node
return
def first_travel(self, root, func):
if not root:
return
if func:
func(root.data)
self.first_travel(root.lchild, func)
self.first_travel(root.rchild, func)
def middle_travel(self, root, func):
if not root:
return
self.middle_travel(root.lchild, func)
if func:
func(root.data)
self.middle_travel(root.rchild, func)
def last_travel(self, root, func):
if not root:
return
self.last_travel(root.lchild, func)
self.last_travel(root.rchild, func)
if func:
func(root.data)
def broad_travel(self, root, func):
queue = [root]
while queue:
node = queue.pop(0)
func(node.data)
if node.lchild:
queue.append(node.lchild)
if node.rchild:
queue.append(node.rchild)
def deep_travel_first(self, root, func):
stack = [root]
last_pop=None
while stack:
node = stack.pop() #last item
func(node.data)
if node.rchild :
stack.append(node.rchild)
if node.lchild :
stack.append(node.lchild)
def deep_travel_middle(self, root, func):
stack = []
last_pop=None
while stack or root:
while root:
stack.append(root)
root = root.lchild
if stack:
node = stack.pop()
func(node.data)
root = node.rchild
def deep_travel_final(self, root, func):
stack = []
last_pop=None
result=[]
while stack or root:
while root:
stack.append(root)
result.append(root.data)
root = root.rchild
if stack:
node = stack.pop()
root = node.lchild
result=result[::-1] #reverse middle->right->left to left->right->middle
for dat in result:
func(dat)
def printf(data):
print("%d " % data)
root_tree = bTree()
root_tree.insert(bNode(8))
root_tree.insert(bNode(10))
root_tree.insert(bNode(12))
root_tree.insert(bNode(0))
root_tree.insert(bNode(100))
root_tree.insert(bNode(101))
print("first_travel:")
root_tree.first_travel(root_tree.root, printf)
print("middle_travel:")
root_tree.middle_travel(root_tree.root, printf)
print("last_travel:")
root_tree.last_travel(root_tree.root, printf)
print("broad_travel:")
root_tree.broad_travel(root_tree.root, printf)
print("deep_travel_first:")
root_tree.deep_travel_first(root_tree.root, printf)
print("deep_travel_middle:")
root_tree.deep_travel_middle(root_tree.root, printf)
print("deep_travel_final:")
root_tree.deep_travel_final(root_tree.root, printf)
if __name__ == "__main__":
main()
原文链接:https://blog.youkuaiyun.com/qq_40036519/article/details/107136059
本文介绍了如何使用Python非递归方式实现树的广度优先遍历(BFS)和深度优先遍历(DFS),包括先序、中序和后序遍历。通过使用栈和队列,详细解释了每个遍历方法的思想并提供了相应的代码实现。
2023

被折叠的 条评论
为什么被折叠?



