Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21(6):692–696. doi:10.1038/nbt823
Bart P, Braeckman BP, Houthoofd K, Vanfleteren JR (2009) Intermediary metabolism. WormBook. doi:10.1895/wormbook.1.146.1
Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Beal MF (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131(2):389–396. doi:10.1093/brain/awm304
Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18(3):143–162. doi:10.1002/nbm.935
Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94
Cann AJ (2003) Maths from scratch for biologists. Wiley Sons, Chichester
Carrola J, Rocha CuM, Barros AnS, Gil AM, Goodfellow BJ, Carreira IM, Bernardo Jo, Gomes A, Sousa V, Carvalho L, Duarte IF (2010) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 10(1):221–230. doi:10.1021/pr100899x
Cimini D, Patil K, Schiraldi C, Nielsen J (2009) Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3. BMC Syst Biol 3(1):17. doi:10.1186/1752-0509-3-17
Corder G, Foreman D (2009) Nonparametric statistics for non-statisticians: a step-by-step approach. Wiley, Hoboken
Crews B, Wikoff WR, Patti GJ, Woo HK, Kalisiak E, Heideker J, Siuzdak G (2009) Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Anal Chem 81(20):8538–8544. doi:10.1021/ac9014947
Darby C (2005) Interactions with microbial pathogens. WormBook. doi:10.1895/wormbook.1.21.1
de Bono M, Bargmann CI (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94(5):679–689. doi:10.1016/S0092-8674(00)81609-8
de Kok J, Muller JLM, Slater EC (1975) EPR studies on the respiratory chain of wild-type Saccharomyces cerevisiae and mutants with a deficiency in succinate dehydrogenase. Biochim Biophys Acta 387:441–450. doi:10.1016/0005-2728(75)90084-5
Dowlatabadi R, Weljie AM, Thorpe TA, Yeung EC, Vogel HJ (2009) Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiol Biochem 47(5):343–350. doi:10.1016/j.plaphy.2008.12.023
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186. doi:10.1126/science.1070919
Eriksson LJE, Kettaneh-Wold N, Trygg J, Wikström C, Wold S (2001) Multi- and megavariate data analysis. Part 1: principles and applications, 2nd edn. Umetrics academy, Umeå
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18(11):1157–1161. doi:10.1038/81137
Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325–330. doi:10.1038/35042517
Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20(6):1425
Grad LI, Sayles LC, Lemire BD (2007) Isolation and functional analysis of mitochondria from the nematode Caenorhabditis elegans. In: Leister D, Herrmann J (eds) Mitochondria: practical protocols. Humana Press, Totowa, pp 51–66
Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134(5):714–717. doi:10.1016/j.cell.2008.08.026
Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, Tysk C, Schmitt-Kopplin P (2009) Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS ONE 4(7):e6386. doi:10.1371/journal.pone.0006386
Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2(1):research0002.0001–0010. doi:10.1186/gb-2000-2-1-research0002
Kang C, Avery L (2009) Systemic regulation of starvation response in Caenorhabditis elegans. Genes Dev 23(1):12–17. doi:10.1101/gad.1723409
Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565. doi:10.1038/nrmicro1177
Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS (2010) Quantitative metabolomics by 1H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE 5(5):e10538
Lenz EM, Bright J, Wilson ID, Morgan SR, Nash AF (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J Pharm Biomed Anal 33(5):1103–1115. doi:10.1016/S0731-7085(03)00410-2
Lewis JA, Fleming JT (1995) Basic culture methods. Methods Cell Biol 48:3–29
MacIntyre DA, Jiménez B, Lewintre EJ, Martin CR, Schäfer H, Ballesteros CG, Mayans JR, Spraul M, Garcia-Conde J, Pineda-Lucena A (2010) Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia 24(4):788–797. doi:10.1038/leu.2009.295
Maharjan RP, Ferenci T (2005) Metabolomic diversity in the species Escherichia coli and its relationship to genetic population structure. Metabolomics 1(3):235–242. doi:10.1007/s11306-005-0002-2
Mapelli V, Olsson L, Nielsen J (2008) Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol 26(9):490–497. doi:10.1016/j.tibtech.2008.05.008
Massart D, Smeyers-Verbeke J, Capron X, Schlesier K (2005) Visual presentation of data by means of box plots. LC-GC Eur 18(4):215–218
Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52. doi:10.1038/msb4100095
O’Riordan VB, Burnell AM (1989) Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans—1. Glycolysis, gluconeogenesis, oxidative phosphorylation and the tricarboxylic acid cycle. Comp Biochem Physiol Part B: Biochem Mol Biol 92(2):233–238. doi:10.1016/0305-0491(89)90271-X
O’Riordan VB, Burnell AM (1990) Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans—II. The glyoxylate cycle and fatty-acid oxidation. Comp Biochem Physiol Part B: Biochem Mol Biol 95(1):125–130. doi:10.1016/0305-0491(90)90258-U
Oyedotun KS, Lemire BD (1997) The carboxyl terminus of the Saccharomyces cerevisiae succinate dehydrogenase membrane subunit, Sdh4p, is necessary for ubiquinone reduction and enzyme stability. J Biol Chem 272(50):31382–31388. doi:10.1074/jbc.272.50.31382
Oyedotun KS, Lemire BD (1999) The Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. Identification of Sdh3p amino acid residues involved in ubiquinone binding. J Biol Chem 274(34):23956–23962. doi:10.1074/jbc.274.34.23956
Parsons HM, Ekman DR, Collette TW, Viant MR (2009) Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst 134(3):478–485. doi:10.1039/b808986h
Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19(1):45–50. doi:10.1038/83496
Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309(5743):2010–2013. doi:10.1126/science.1105891
Reinke SN, Hu X, Sykes BD, Lemire BD (2010) Caenorhabditis elegans diet significantly affects metabolic profile, mitochondrial DNA levels, lifespan and brood size. Mol Genet Metab 100(3):274–282. doi:10.1016/j.ymgme.2010.03.013
Saude E, Adamko D, Rowe B, Marrie T, Sykes B (2007) Variation of metabolites in normal human urine. Metabolomics 3(4):439–451. doi:10.1007/s11306-007-0091-1
Shaham O, Slate NG, Goldberger O, Xu Q, Ramanathan A, Souza AL, Clish CB, Sims KB, Mootha VK (2010) A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci USA 107(4):1571–1575. doi:10.1073/pnas.0906039107
Solanky KS, Bailey NJ, Beckwith-Hall BM, Davis A, Bingham S, Holmes E, Nicholson JK, Cassidy A (2003) Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323(2):197–204. doi:10.1016/j.ab.2003.08.028
Szeto SS, Reinke SN, Sykes BD, Lemire BD (2007) Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate. J Biol Chem 282(37):27518–27526. doi:10.1074/jbc.M700601200
Szeto SS, Reinke SN, Sykes BD, Lemire BD (2010) Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through 1H NMR-based metabolic footprinting. J Proteome Res 9(12):6729–6739. doi:10.1021/pr100880y
Walsh MC, Nugent A, Brennan L, Gibney MJ (2008) Understanding the metabolome–challenges for metabolomics. Nutrition Bulletin 33(4):316–323. doi:10.1111/j.1467-3010.2008.00732.x
Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H-NMR metabolomics data. Anal Chem 78(13):4430–4442. doi:10.1021/ac060209g
Zira AN, Theocharis SE, Mitropoulos D, Migdalis V, Mikros E (2010) 1H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool. J Proteome Res 9(8):4038–4044. doi:10.1021/pr100226m
该文综述了代谢组学在生物领域的广泛应用,包括酵母代谢指纹、线虫行为研究、人类疾病生物标志物鉴定、植物胚胎发生过程、以及肠道微生物相互作用等方面。通过核磁共振(NMR)、质谱(MS)等技术,揭示了代谢谱在基因功能、疾病诊断和药物研发中的重要作用。
518

被折叠的 条评论
为什么被折叠?



