【Task03】Numpy组队学习—统计相关

【Task03】Numpy组队学习—统计相关

次序统计

计算最小值: amin()

  • numpy.amin(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])
    Return the minimum of an array or minimum along an axis.
    【例】计算最小值
import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.amin(x)
print(y)  # 11

y = np.amin(x, axis=0)
print(y)  # [11 12 13 14 15]

y = np.amin(x, axis=1)
print(y)  # [11 16 21 26 31]

axis=0时:每一列最值
axis=1时:每一行最值

计算最大值: amax()

  • numpy.amax(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])
    Return the maximum of an array or maximum along an axis.
    【例】计算最大值
import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.amax(x)
print(y)  # 35

y = np.amax(x, axis=0)
print(y)  # [31 32 33 34 35]

y = np.amax(x, axis=1)
print(y)  # [15 20 25 30 35]

计算极差:ptp()

  • numpy.ptp(a, axis=None, out=None, keepdims=np._NoValue)
    Range of values (maximum - minimum) along an axis. The name of the function comes from the acronym for ‘peak to peak’.
    【例】
import numpy as np

np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10  2  1  1 16]
#  [18 11 10 14 10]
#  [11  1  9 18  8]
#  [16  2  0 15 16]]

print(np.ptp(x))  # 18
print(np.ptp(x, axis=0))  # [ 8 10 10 17  8]
print(np.ptp(x, axis=1))  # [15  8 17 16]

所谓极差:最大值减去最小值

计算分位数:percentile

  • numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation=‘linear’, keepdims=False)
    Compute the q-th percentile of the data along the specified axis. Returns the q-th percentile(s) of the array elements.
  • a:用来算分位数的数组
  • q:介于0-100的浮点数,标明要算几分位数,四分之一就是25.二分之一是50
  • axis:坐标轴的方向,取值0或者1
    【例】
import numpy as np

np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10  2  1  1 16]
#  [18 11 10 14 10]
#  [11  1  9 18  8]
#  [16  2  0 15 16]]

print(np.percentile(x, [25, 50]))  
# [ 2. 10.]

print(np.percentile(x, [25, 50], axis=0))
# [[10.75  1.75  0.75 10.75  9.5 ]
#  [13.5   2.    5.   14.5  13.  ]]

print(np.percentile(x, [25, 50], axis=1))
# [[ 1. 10.  8.  2.]
#  [ 2. 11.  9. 15.]]

均值与方差

计算中位数:median()

  • numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
    Compute the median along the specified axis. Returns the median of the array elements.
    【例】:
import numpy as np

np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10  2  1  1 16]
#  [18 11 10 14 10]
#  [11  1  9 18  8]
#  [16  2  0 15 16]]
print(np.percentile(x, 50))
print(np.median(x))
# 10.0

print(np.percentile(x, 50, axis=0))
print(np.median(x, axis=0))
# [13.5  2.   5.  14.5 13. ]

print(np.percentile(x, 50, axis=1))
print(np.median(x, axis=1))
# [ 2. 11.  9. 15.]

计算平均数 mean()

  • numpy.mean(a[, axis=None, dtype=None, out=None, keepdims=np._NoValue)])
    Compute the arithmetic mean along the specified axis.
    【例】:
import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.mean(x)
print(y)  # 23.0

y = np.mean(x, axis=0)
print(y)  # [21. 22. 23. 24. 25.]

y = np.mean(x, axis=1)
print(y)  # [13. 18. 23. 28. 33.]

加权平均值:average()

  • numpy.average(a[, axis=None, weights=None, returned=False])
    Compute the weighted average along the specified axis.
    【例】:计算加权平均值(将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。)
import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.average(x)
print(y)  # 23.0

y = np.average(x, axis=0)
print(y)  # [21. 22. 23. 24. 25.]

y = np.average(x, axis=1)
print(y)  # [13. 18. 23. 28. 33.]


y = np.arange(1, 26).reshape([5, 5])
print(y)
# [[ 1  2  3  4  5]
#  [ 6  7  8  9 10]
#  [11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]]

z = np.average(x, weights=y)
print(z)  # 27.0

z = np.average(x, axis=0, weights=y)
print(z)
# [25.54545455 26.16666667 26.84615385 27.57142857 28.33333333]

z = np.average(x, axis=1, weights=y)
print(z)
# [13.66666667 18.25       23.15384615 28.11111111 33.08695652]

计算方差:var()

  • numpy.var(a[, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue])
    Compute the variance along the specified axis.
  • ddof=0:是“Delta Degrees of Freedom”,表示自由度的个数。

要注意方差和样本方差的无偏估计,方差公式中分母上是n;样本方差无偏估计公式中分母上是n-1(n为样本个数)
【例】:

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.var(x)
print(y)  # 52.0
y = np.mean((x - np.mean(x)) ** 2)
print(y)  # 52.0

y = np.var(x, ddof=1)
print(y)  # 54.166666666666664
y = np.sum((x - np.mean(x)) ** 2) / (x.size - 1)
print(y)  # 54.166666666666664
#自由度就是x.size减去的个数

y = np.var(x, axis=0)
print(y)  # [50. 50. 50. 50. 50.]

y = np.var(x, axis=1)
print(y)  # [2. 2. 2. 2. 2.]

计算标准差:std()

  • numpy.std(a[, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue])
    Compute the standard deviation along the
    specified axis.
    用来衡量数据平均值分散程度
    【例】:
import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.std(x)
print(y)  # 7.211102550927978
y = np.sqrt(np.var(x))
print(y)  # 7.211102550927978

y = np.std(x, axis=0)
print(y)
# [7.07106781 7.07106781 7.07106781 7.07106781 7.07106781]

y = np.std(x, axis=1)
print(y)
# [1.41421356 1.41421356 1.41421356 1.41421356 1.41421356]

相关

计算协方差矩阵:cov()

计算协方差矩阵公式

  • numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None,fweights=None,aweights=None)
    Estimate a covariance matrix, given data and weights.
    【例】
import numpy as np

x = [1, 2, 3, 4, 6]
y = [0, 2, 5, 6, 7]
print(np.cov(x))  # 3.7   #样本方差
print(np.cov(y))  # 8.5   #样本方差
print(np.cov(x, y))
# [[3.7  5.25]
#  [5.25 8.5 ]]

print(np.var(x))  # 2.96    #方差
print(np.var(x, ddof=1))  # 3.7    #样本方差
print(np.var(y))  # 6.8    #方差
print(np.var(y, ddof=1))  # 8.5    #样本方差

z = np.mean((x - np.mean(x)) * (y - np.mean(y)))    #协方差
print(z)  # 4.2

z = np.sum((x - np.mean(x)) * (y - np.mean(y))) / (len(x) - 1)   #样本协方差
print(z)  # 5.25

z = np.dot(x - np.mean(x), y - np.mean(y)) / (len(x) - 1)     #样本协方差     
print(z)  # 5.25

dot函数:计算两个参数的乘积

计算相关系数:corrcoef()

  • numpy.corrcoef(x, y=None, rowvar=True, bias=np._NoValue,
    ddof=np._NoValue)
    Return Pearson product-moment correlation coefficients.
    np.cov()描述的是两个向量协同变化的程度,它的取值可能非常大,也可能非常小,这就导致没法直观地衡量二者协同变化的程度。相关系数实际上是正则化的协方差,n个变量的相关系数形成一个n维方阵。
    【例】
import numpy as np

np.random.seed(20200623)
x, y = np.random.randint(0, 20, size=(2, 4))

print(x)  # [10  2  1  1]
print(y)  # [16 18 11 10]

z = np.corrcoef(x, y)
print(z)
# [[1.         0.48510096]
#  [0.48510096 1.        ]]

a = np.dot(x - np.mean(x), y - np.mean(y))
b = np.sqrt(np.dot(x - np.mean(x), x - np.mean(x)))
c = np.sqrt(np.dot(y - np.mean(y), y - np.mean(y)))
print(a / (b * c))  # 0.4851009629263671

直方图:digitize()

  • numpy.digitize(x, bins, right=False)
    Return the indices of the bins to which each value in input array belongs.
    【例】
import numpy as np

x = np.array([0.2, 6.4, 3.0, 1.6])
bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
inds = np.digitize(x, bins)
print(inds)  # [1 4 3 2]
for n in range(x.size):
    print(bins[inds[n] - 1], "<=", x[n], "<", bins[inds[n]])

# 0.0 <= 0.2 < 1.0
# 4.0 <= 6.4 < 10.0
# 2.5 <= 3.0 < 4.0
# 1.0 <= 1.6 < 2.5

import numpy as np

x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
bins = np.array([0, 5, 10, 15, 20])
inds = np.digitize(x, bins, right=True)
print(inds)  # [1 2 3 4 4]

inds = np.digitize(x, bins, right=False)
print(inds)  # [1 3 3 4 5]

right参数:若为True,归上一类;若为False,归下一类

课后习题

y=X β 对于简单线性回归,向量计法等同于:
题目描述>给定X跟y我们可以使用 NumPy 库解出β值
from numpy . linalg import inv
from numpy import dot, transpose
X = [[1, 6, 2] , [1, 8, 1] , [1, 10, 0] , [1 , 14, 2] , [1, 18, 0]]
y = [[7] , [9] , [13] , [17.5] , [18]]

solution:
题目1
怎么求非方阵的逆:pinv
dot:点乘 transpose:转置

计算给定数组中每行的最大值。
a = np.random.randint(1, 10, [5, 3])
如何在二维numpy数组的每一行中找到最大值?

solution:
第二题

计算数组的元素最大值与最小值之差(极值)
【知识点:统计相关】
数组为:
A=[[3 7 5]
[8 4 3]
[2 4 9]]

solution:
第三题

计算s的均值,方差,标准差,协方差
【知识点:统计相关】
s=[9.7, 10, 10.3, 9.7,10,10.3,9.7,10,10.3]

solution:
第四题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值