【图像处理】图像分割的工作原理和算法实现(matlab实现)

本文详细介绍并实践了两种图像分割算法:p参数法和均匀性度量法。通过具体代码实现,展示了如何使用这两种方法进行图像分割,包括参数调整和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验目的

1、掌握p参数分割的工作原理和算法实现
2、掌握均匀性度量法分割的工作原理和算法实现

实验图片

链接:https://pan.baidu.com/s/1gSpYLw9Xz5OK_hSqSGeUwQ
提取码:o4au

实验内容

实现P-参数法的图像分割的代码

测试代码如下:

Im=imread('yw2_g.jpg'); 
[Im2]=pParam0(Im,0.7974);
imshow(Im2);

实验代码:

function Im2 = pParam0(im,perct)
bestDelta = inf;
BestThrd = 0;
[m,n] = size(im);
for Thrd = 0:255
    ind1 = find(im<=Thrd);
    ind2 = find(im>Thrd);
    if(~isempty(ind1) && ~isempty(ind2))
        p1 = length(ind1)/(m*n);
        p2 = length(ind2)/(m*n);
        Delta = abs(p2-perct);
        if(Delta < bestDelta)
            BestThrd = Thrd;
            bestDelta = Delta;
        end
    end
end
Im2 = zeros(m,n);
Im2( find(im > BestThrd) ) =1;
Im2 = logical(Im2);

实验结果:

实现均匀性度量法的图像分割的代码

测试代码:

Im=imread('cameraman.tif'); 
[Im2,BestClThrd]=jyxdl(Im);
imshow(Im2);

实验代码:

function [Im2,BestClThrd] = jyxdl(Im)
BestCost = inf;
BestClThrd = 0;
[m,n] = size(Im);
for ClThrd = 0:255
    ind1 = find(Im<=ClThrd);
    ind2 = find(Im>ClThrd);
    if(~isempty(ind1) && ~isempty(ind2))
        mu1 = mean(Im(ind1));
        mu2 = mean(Im(ind2));
        sigma1_sq = sum((Im(ind1)-mu1).^2);
        sigma2_sq = sum((Im(ind2)-mu2).^2);
        p1 = length(ind1)/(m*n);
        p2 = length(ind2)/(m*n);
        Cost = p1*sigma1_sq + p2*sigma2_sq;
        if( Cost < BestCost )
            BestClThrd = ClThrd;
            BestCost = Cost;
        end
    end
end
Im2 = zeros(m,n);
Im2 ( find(Im > BestClThrd )) =1;
Im2 = logical(Im2);
end

实验结果:

学如逆水行舟,不进则退
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一百个Chocolate

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值