signature=df5977ee22d5d4ef34a98bc071d3b121,Data mining PubChem using a support vector machine with t...

摘要:

The amount of high-throughput screening (HTS) data readily available has significantly increased because of the PubChem project (http://pubchem.ncbi.nlm.nih.gov/). There is considerable opportunity for data mining of small molecules for a variety of biological systems using cheminformatic tools and the resources available through PubChem. In this work, we trained a support vector machine (SVM) classifier using the Signature molecular descriptor on factor XIa inhibitor HTS data. The optimal number of Signatures was selected by implementing a feature selection algorithm of highly correlated clusters. Our method included an improvement that allowed clusters to work together for accuracy improvement, where previous methods have scored clusters on an individual basis. The resulting model had a 10-fold cross-validation accuracy of 89%, and additional validation was provided by two independent test sets. We applied the SVM to rapidly predict activity for approximately 12 million compounds also deposited in PubChem. Confidence in these predictions was assessed by considering the number of Signatures within the training set range for a given compound, defined as the overlap metric. To further evaluate compounds identified as active by the SVM, docking studies were performed using AutoDock. A focused database of compounds predicted to be active was obtained with several of the compounds appreciably dissimilar to those used in training the SVM. This focused database is suitable for further study. The data mining technique presented here is not specific to factor XIa inhibitors, and could be applied to other bioassays in PubChem where one is looking to expand the search for small molecules as chemical probes.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值