概述 3
二、理论基础4
1 基本原理4
基本数量关系6
三、仿真模型建立7
1仿真电路绘制7
2参数设置8
(1)仿真参数8
(2)脉冲参数9
(3)器件参数9
(4)电源参数11
(5)负载参数11
四、仿真结果分析13
三相全控桥整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。而应用计算机仿真来研究电力电子装置,有利于提高研究效率,降低研发成本。基于MATLAB/ SIMULINK软件的电力电子电路仿真,更有助于初学者学习电力电子,加深对各种电路器件原理的理解。结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路的进行仿真,对输出电压、电流、变压器二次侧电压、二次侧电流、及晶闸管电压等参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理及输出特性。
电力电子技术在当代生活中发挥着无可替代的作用,而其中的整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。并且整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。它是由半波整流电路发展而来的。由一组共阴极的三相半波可控整流电路和一组共阳极接法的晶闸管串联而成。六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
二、理论基础
1、基本原理
三相桥式全控整流电路原理图如图1所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT4,VT6,VT2)的串联组合。在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。
为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管VT1和VT4接a相,晶闸管VT3和VT6接b相,晶管VT5和VT2接c相。晶闸管VT1,VT3,VT5组成共阴极组,而晶闸管VT4,VT6,VT2组成共阳极组。
为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就是在自然换相点触发换相时的情况。图1是电路接线图。
图1 三相桥式整流电路电路原理图
为了分析方便起见,把一个周期等分6段(见图2)。
图2 三相桥式整流电路触发脉冲
在第(1)段期间,a相电压最高,而共阴极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管VT6被触发导通。这时电流由a相经VT1流向负载,再经VT6流入b相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为ud=ua-ub=uab
经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管VT1继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。这时电流由a相流出经VT1、负载、VT2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为ud=ua-uc=uac,再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管VT3,电流即从a