Java中的JUC

一、AQS

1.AQS 的核心目标

解决同步工具的共性问题:

同步状态管理:如何定义和修改共享资源的状态(如锁的持有、信号量的许可数)。

线程阻塞与唤醒:当线程获取资源失败时,如何安全地阻塞线程;当资源释放时,如何唤醒等待的线程。

等待队列管理:如何维护等待资源的线程队列,保证线程按公平 / 非公平策略获取资源。

AQS 通过模板方法模式将这些共性逻辑抽象出来,同步工具只需重写特定方法(如获取 / 释放状态)即可快速实现。

2.AQS 的核心结构

AQS 内部有三个核心成员:

2.1.同步状态(state

一个 volatile int 类型的变量,用于表示共享资源的状态(具体含义由子类定),例如:

  • ReentrantLock 中,state=0 表示锁未被持有,state>0 表示锁被持有(值为重入次数);
  • Semaphore 中,state 表示可用的许可数量;
  • CountDownLatch 中,state 表示倒计时的计数器值。    

对 state 的修改通过 CAS 操作保证原子性(compareAndSetState 方法),确保多线程下的状态一致性

2. 2.双向阻塞队列(等待队列),类似于 Monitor EntryList

  • 当线程获取资源失败时,会被包装成节点(Node 加入队列,进入阻塞状态;
  • 队列是双向链表,每个节点包含:
    • 线程引用(thread):当前等待的线程;
    • 等待状态(waitStatus):表示节点的状态(如 CANCELLED 已取消、SIGNAL 等待唤醒等);
    • 前驱节点(prev)和后继节点(next):维护链表结构。
  • 队列的头节点(head)是 “哨兵节点”(不关联线程),用于简化队列操作;尾节点(tail)指向最后一个等待节点。

2.3.条件变量来实现等待、唤醒机制,支持多个条件变量,类似于 Monitor WaitSet

2.4.提供了一些模版方法去实现

        tryAcquire、tryReleas、tryAcquireShared、tryReleaseShared、isHeldExclusively

2.5.使用AQS自定义不可重入锁

package org.example.n8;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;


@Slf4j(topic = "c.TestAqs")
public class TestAqs {
    public static void main(String[] args) {
        MyLock lock = new MyLock();
//        testLock(lock); // 测试加锁
//        testUnreentryLock(lock); // 测试不可重入锁
//        testInterrupt(lock); // 测试可中断锁
        testTryLock(lock);

    }

    private static void testTryLock(MyLock lock) {
        new Thread(() -> {
            lock.lock();
            try {
                log.debug("locking...");
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            } finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        },"t1").start();

        new Thread(() -> {
            try {
                if (lock.tryLock(1000, TimeUnit.MILLISECONDS)) {
                    try {
                        log.debug("locking...");
                    }finally {
                        log.debug("unlocking...");
                        lock.unlock();
                    }
                }else{
                    log.debug("获取锁失败...");
                }
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        },"t2").start();
    }

    private static void testInterrupt(MyLock lock) {
        new Thread(() -> {
            lock.lock();
            try {
                log.debug("locking...");
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            } finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        },"t1").start();

        Thread t2 = new Thread(() -> {
            try {
                lock.lockInterruptibly();
                try {
                    log.debug("locking...");
                } finally {
                    log.debug("unlocking...");
                    lock.unlock();
                }

            } catch (InterruptedException e) {
                log.debug(Thread.currentThread().getName() + "线程在获取锁的时候被打断...");
            }
        }, "t2");

        t2.start();
        t2.interrupt();
    }

    private static void testUnreentryLock(MyLock lock) {
          new Thread(() -> {
                lock.lock();
                log.debug("第一次加锁...");
                lock.lock();
            log.debug("第二次加锁...");
            try {
                log.debug("locking...");
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            } finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        },"t1").start();
    }

    private static void testLock(MyLock lock) {
        new Thread(() -> {
            lock.lock();
            try {
               log.debug("locking...");
               TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            } finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        },"t1").start();

        new Thread(() -> {
            lock.lock();
            try {
                log.debug("locking...");
            }finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        },"t2").start();
    }
}

// 自定义锁(不可重入锁)
class MyLock implements Lock {

    // 独占锁 同步类
    class MySync extends AbstractQueuedSynchronizer {

        @Override
        protected boolean tryAcquire(int arg) {
            if(compareAndSetState(0, 1)){
                // 加锁,并设置 owner 为当前线程
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        @Override
        protected boolean tryRelease(int arg) {

            // 下面设置owner线程和state为0的顺序不能乱,因为
            // state变量是被volatile修饰的,可以保证之前的修改对其他线程可见
            // 但是exclusiveOwnerThread变量是没有被volatile修饰的,所以不能保证之前的修改对其他线程可见
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        @Override // 判断当前线程是否持有锁
        protected boolean isHeldExclusively() {
            return getState() == 1;
        }

        public Condition newCondition() {
            return new ConditionObject();
        }

    }

    private MySync sync = new MySync();


    @Override // 加锁(不成功进入等待队列)
    public void lock() {
        sync.acquire(1);
    }

    @Override // 加锁 可打断
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }

    @Override // 尝试加锁(一次)
    public boolean tryLock() {
        return sync.tryAcquire(1);
    }

    @Override // 尝试加锁,带超时时间
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(time));
    }

    @Override // 解锁
    public void unlock() {
        sync.release(1);
    }

    @Override // 创建条件变量
    public Condition newCondition() {
        return sync.newCondition();
    }
}

3.ReentrantLock的实现原理

3.1.ReentrantLock的源码

/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent.locks;

import java.util.Collection;
import java.util.concurrent.TimeUnit;
import jdk.internal.vm.annotation.ReservedStackAccess;

/**
 * A reentrant mutual exclusion {@link Lock} with the same basic
 * behavior and semantics as the implicit monitor lock accessed using
 * {@code synchronized} methods and statements, but with extended
 * capabilities.
 *
 * <p>A {@code ReentrantLock} is <em>owned</em> by the thread last
 * successfully locking, but not yet unlocking it. A thread invoking
 * {@code lock} will return, successfully acquiring the lock, when
 * the lock is not owned by another thread. The method will return
 * immediately if the current thread already owns the lock. This can
 * be checked using methods {@link #isHeldByCurrentThread}, and {@link
 * #getHoldCount}.
 *
 * <p>The constructor for this class accepts an optional
 * <em>fairness</em> parameter.  When set {@code true}, under
 * contention, locks favor granting access to the longest-waiting
 * thread.  Otherwise this lock does not guarantee any particular
 * access order.  Programs using fair locks accessed by many threads
 * may display lower overall throughput (i.e., are slower; often much
 * slower) than those using the default setting, but have smaller
 * variances in times to obtain locks and guarantee lack of
 * starvation. Note however, that fairness of locks does not guarantee
 * fairness of thread scheduling. Thus, one of many threads using a
 * fair lock may obtain it multiple times in succession while other
 * active threads are not progressing and not currently holding the
 * lock.
 * Also note that the untimed {@link #tryLock()} method does not
 * honor the fairness setting. It will succeed if the lock
 * is available even if other threads are waiting.
 *
 * <p>It is recommended practice to <em>always</em> immediately
 * follow a call to {@code lock} with a {@code try} block, most
 * typically in a before/after construction such as:
 *
 * <pre> {@code
 * class X {
 *   private final ReentrantLock lock = new ReentrantLock();
 *   // ...
 *
 *   public void m() {
 *     lock.lock();  // block until condition holds
 *     try {
 *       // ... method body
 *     } finally {
 *       lock.unlock();
 *     }
 *   }
 * }}</pre>
 *
 * <p>In addition to implementing the {@link Lock} interface, this
 * class defines a number of {@code public} and {@code protected}
 * methods for inspecting the state of the lock.  Some of these
 * methods are only useful for instrumentation and monitoring.
 *
 * <p>Serialization of this class behaves in the same way as built-in
 * locks: a deserialized lock is in the unlocked state, regardless of
 * its state when serialized.
 *
 * <p>This lock supports a maximum of 2147483647 recursive locks by
 * the same thread. Attempts to exceed this limit result in
 * {@link Error} throws from locking methods.
 *
 * @since 1.5
 * @author Doug Lea
 */
public class ReentrantLock implements Lock, java.io.Serializable {
    private static final long serialVersionUID = 7373984872572414699L;
    /** Synchronizer providing all implementation mechanics */
    private final Sync sync;

    /**
     * Base of synchronization control for this lock. Subclassed
     * into fair and nonfair versions below. Uses AQS state to
     * represent the number of holds on the lock.
     */
    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -5179523762034025860L;

        /**
         * Performs non-fair tryLock.
         */
        @ReservedStackAccess
        final boolean tryLock() {
            Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            } else if (getExclusiveOwnerThread() == current) {
                if (++c < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(c);
                return true;
            }
            return false;
        }

        /**
         * Checks for reentrancy and acquires if lock immediately
         * available under fair vs nonfair rules. Locking methods
         * perform initialTryLock check before relaying to
         * corresponding AQS acquire methods.
         */
        abstract boolean initialTryLock();

        @ReservedStackAccess
        final void lock() {
            if (!initialTryLock())
                acquire(1);
        }

        @ReservedStackAccess
        final void lockInterruptibly() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            if (!initialTryLock())
                acquireInterruptibly(1);
        }

        @ReservedStackAccess
        final boolean tryLockNanos(long nanos) throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            return initialTryLock() || tryAcquireNanos(1, nanos);
        }

        @ReservedStackAccess
        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (getExclusiveOwnerThread() != Thread.currentThread())
                throw new IllegalMonitorStateException();
            boolean free = (c == 0);
            if (free)
                setExclusiveOwnerThread(null);
            setState(c);
            return free;
        }

        protected final boolean isHeldExclusively() {
            // While we must in general read state before owner,
            // we don't need to do so to check if current thread is owner
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final ConditionObject newCondition() {
            return new ConditionObject();
        }

        // Methods relayed from outer class

        final Thread getOwner() {
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }

        final int getHoldCount() {
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked() {
            return getState() != 0;
        }

        /**
         * Reconstitutes the instance from a stream (that is, deserializes it).
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }

    /**
     * Sync object for non-fair locks
     */
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        final boolean initialTryLock() {
            Thread current = Thread.currentThread();
            if (compareAndSetState(0, 1)) { // first attempt is unguarded
                setExclusiveOwnerThread(current);
                return true;
            } else if (getExclusiveOwnerThread() == current) {
                int c = getState() + 1;
                if (c < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(c);
                return true;
            } else
                return false;
        }

        /**
         * Acquire for non-reentrant cases after initialTryLock prescreen
         */
        protected final boolean tryAcquire(int acquires) {
            if (getState() == 0 && compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }
    }

    /**
     * Sync object for fair locks
     */
    static final class FairSync extends Sync {
        private static final long serialVersionUID = -3000897897090466540L;

        /**
         * Acquires only if reentrant or queue is empty.
         */
        final boolean initialTryLock() {
            Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedThreads() && compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            } else if (getExclusiveOwnerThread() == current) {
                if (++c < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(c);
                return true;
            }
            return false;
        }

        /**
         * Acquires only if thread is first waiter or empty
         */
        protected final boolean tryAcquire(int acquires) {
            if (getState() == 0 && !hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }
    }

    /**
     * Creates an instance of {@code ReentrantLock}.
     * This is equivalent to using {@code ReentrantLock(false)}.
     */
    public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

    /**
     * Acquires the lock.
     *
     * <p>Acquires the lock if it is not held by another thread and returns
     * immediately, setting the lock hold count to one.
     *
     * <p>If the current thread already holds the lock then the hold
     * count is incremented by one and the method returns immediately.
     *
     * <p>If the lock is held by another thread then the
     * current thread becomes disabled for thread scheduling
     * purposes and lies dormant until the lock has been acquired,
     * at which time the lock hold count is set to one.
     */
    public void lock() {
        sync.lock();
    }

    /**
     * Acquires the lock unless the current thread is
     * {@linkplain Thread#interrupt interrupted}.
     *
     * <p>Acquires the lock if it is not held by another thread and returns
     * immediately, setting the lock hold count to one.
     *
     * <p>If the current thread already holds this lock then the hold count
     * is incremented by one and the method returns immediately.
     *
     * <p>If the lock is held by another thread then the
     * current thread becomes disabled for thread scheduling
     * purposes and lies dormant until one of two things happens:
     *
     * <ul>
     *
     * <li>The lock is acquired by the current thread; or
     *
     * <li>Some other thread {@linkplain Thread#interrupt interrupts} the
     * current thread.
     *
     * </ul>
     *
     * <p>If the lock is acquired by the current thread then the lock hold
     * count is set to one.
     *
     * <p>If the current thread:
     *
     * <ul>
     *
     * <li>has its interrupted status set on entry to this method; or
     *
     * <li>is {@linkplain Thread#interrupt interrupted} while acquiring
     * the lock,
     *
     * </ul>
     *
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * <p>In this implementation, as this method is an explicit
     * interruption point, preference is given to responding to the
     * interrupt over normal or reentrant acquisition of the lock.
     *
     * @throws InterruptedException if the current thread is interrupted
     */
    public void lockInterruptibly() throws InterruptedException {
        sync.lockInterruptibly();
    }

    /**
     * Acquires the lock only if it is not held by another thread at the time
     * of invocation.
     *
     * <p>Acquires the lock if it is not held by another thread and
     * returns immediately with the value {@code true}, setting the
     * lock hold count to one. Even when this lock has been set to use a
     * fair ordering policy, a call to {@code tryLock()} <em>will</em>
     * immediately acquire the lock if it is available, whether or not
     * other threads are currently waiting for the lock.
     * This &quot;barging&quot; behavior can be useful in certain
     * circumstances, even though it breaks fairness. If you want to honor
     * the fairness setting for this lock, then use
     * {@link #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS)}
     * which is almost equivalent (it also detects interruption).
     *
     * <p>If the current thread already holds this lock then the hold
     * count is incremented by one and the method returns {@code true}.
     *
     * <p>If the lock is held by another thread then this method will return
     * immediately with the value {@code false}.
     *
     * @return {@code true} if the lock was free and was acquired by the
     *         current thread, or the lock was already held by the current
     *         thread; and {@code false} otherwise
     */
    public boolean tryLock() {
        return sync.tryLock();
    }

    /**
     * Acquires the lock if it is not held by another thread within the given
     * waiting time and the current thread has not been
     * {@linkplain Thread#interrupt interrupted}.
     *
     * <p>Acquires the lock if it is not held by another thread and returns
     * immediately with the value {@code true}, setting the lock hold count
     * to one. If this lock has been set to use a fair ordering policy then
     * an available lock <em>will not</em> be acquired if any other threads
     * are waiting for the lock. This is in contrast to the {@link #tryLock()}
     * method. If you want a timed {@code tryLock} that does permit barging on
     * a fair lock then combine the timed and un-timed forms together:
     *
     * <pre> {@code
     * if (lock.tryLock() ||
     *     lock.tryLock(timeout, unit)) {
     *   ...
     * }}</pre>
     *
     * <p>If the current thread
     * already holds this lock then the hold count is incremented by one and
     * the method returns {@code true}.
     *
     * <p>If the lock is held by another thread then the
     * current thread becomes disabled for thread scheduling
     * purposes and lies dormant until one of three things happens:
     *
     * <ul>
     *
     * <li>The lock is acquired by the current thread; or
     *
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread; or
     *
     * <li>The specified waiting time elapses
     *
     * </ul>
     *
     * <p>If the lock is acquired then the value {@code true} is returned and
     * the lock hold count is set to one.
     *
     * <p>If the current thread:
     *
     * <ul>
     *
     * <li>has its interrupted status set on entry to this method; or
     *
     * <li>is {@linkplain Thread#interrupt interrupted} while
     * acquiring the lock,
     *
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * <p>If the specified waiting time elapses then the value {@code false}
     * is returned.  If the time is less than or equal to zero, the method
     * will not wait at all.
     *
     * <p>In this implementation, as this method is an explicit
     * interruption point, preference is given to responding to the
     * interrupt over normal or reentrant acquisition of the lock, and
     * over reporting the elapse of the waiting time.
     *
     * @param timeout the time to wait for the lock
     * @param unit the time unit of the timeout argument
     * @return {@code true} if the lock was free and was acquired by the
     *         current thread, or the lock was already held by the current
     *         thread; and {@code false} if the waiting time elapsed before
     *         the lock could be acquired
     * @throws InterruptedException if the current thread is interrupted
     * @throws NullPointerException if the time unit is null
     */
    public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
        return sync.tryLockNanos(unit.toNanos(timeout));
    }

    /**
     * Attempts to release this lock.
     *
     * <p>If the current thread is the holder of this lock then the hold
     * count is decremented.  If the hold count is now zero then the lock
     * is released.  If the current thread is not the holder of this
     * lock then {@link IllegalMonitorStateException} is thrown.
     *
     * @throws IllegalMonitorStateException if the current thread does not
     *         hold this lock
     */
    public void unlock() {
        sync.release(1);
    }

    /**
     * Returns a {@link Condition} instance for use with this
     * {@link Lock} instance.
     *
     * <p>The returned {@link Condition} instance supports the same
     * usages as do the {@link Object} monitor methods ({@link
     * Object#wait() wait}, {@link Object#notify notify}, and {@link
     * Object#notifyAll notifyAll}) when used with the built-in
     * monitor lock.
     *
     * <ul>
     *
     * <li>If this lock is not held when any of the {@link Condition}
     * {@linkplain Condition#await() waiting} or {@linkplain
     * Condition#signal signalling} methods are called, then an {@link
     * IllegalMonitorStateException} is thrown.
     *
     * <li>When the condition {@linkplain Condition#await() waiting}
     * methods are called the lock is released and, before they
     * return, the lock is reacquired and the lock hold count restored
     * to what it was when the method was called.
     *
     * <li>If a thread is {@linkplain Thread#interrupt interrupted}
     * while waiting then the wait will terminate, an {@link
     * InterruptedException} will be thrown, and the thread's
     * interrupted status will be cleared.
     *
     * <li>Waiting threads are signalled in FIFO order.
     *
     * <li>The ordering of lock reacquisition for threads returning
     * from waiting methods is the same as for threads initially
     * acquiring the lock, which is in the default case not specified,
     * but for <em>fair</em> locks favors those threads that have been
     * waiting the longest.
     *
     * </ul>
     *
     * @return the Condition object
     */
    public Condition newCondition() {
        return sync.newCondition();
    }

    /**
     * Queries the number of holds on this lock by the current thread.
     *
     * <p>A thread has a hold on a lock for each lock action that is not
     * matched by an unlock action.
     *
     * <p>The hold count information is typically only used for testing and
     * debugging purposes. For example, if a certain section of code should
     * not be entered with the lock already held then we can assert that
     * fact:
     *
     * <pre> {@code
     * class X {
     *   final ReentrantLock lock = new ReentrantLock();
     *   // ...
     *   public void m() {
     *     assert lock.getHoldCount() == 0;
     *     lock.lock();
     *     try {
     *       // ... method body
     *     } finally {
     *       lock.unlock();
     *     }
     *   }
     * }}</pre>
     *
     * @return the number of holds on this lock by the current thread,
     *         or zero if this lock is not held by the current thread
     */
    public int getHoldCount() {
        return sync.getHoldCount();
    }

    /**
     * Queries if this lock is held by the current thread.
     *
     * <p>Analogous to the {@link Thread#holdsLock(Object)} method for
     * built-in monitor locks, this method is typically used for
     * debugging and testing. For example, a method that should only be
     * called while a lock is held can assert that this is the case:
     *
     * <pre> {@code
     * class X {
     *   final ReentrantLock lock = new ReentrantLock();
     *   // ...
     *
     *   public void m() {
     *       assert lock.isHeldByCurrentThread();
     *       // ... method body
     *   }
     * }}</pre>
     *
     * <p>It can also be used to ensure that a reentrant lock is used
     * in a non-reentrant manner, for example:
     *
     * <pre> {@code
     * class X {
     *   final ReentrantLock lock = new ReentrantLock();
     *   // ...
     *
     *   public void m() {
     *       assert !lock.isHeldByCurrentThread();
     *       lock.lock();
     *       try {
     *           // ... method body
     *       } finally {
     *           lock.unlock();
     *       }
     *   }
     * }}</pre>
     *
     * @return {@code true} if current thread holds this lock and
     *         {@code false} otherwise
     */
    public boolean isHeldByCurrentThread() {
        return sync.isHeldExclusively();
    }

    /**
     * Queries if this lock is held by any thread. This method is
     * designed for use in monitoring of the system state,
     * not for synchronization control.
     *
     * @return {@code true} if any thread holds this lock and
     *         {@code false} otherwise
     */
    public boolean isLocked() {
        return sync.isLocked();
    }

    /**
     * Returns {@code true} if this lock has fairness set true.
     *
     * @return {@code true} if this lock has fairness set true
     */
    public final boolean isFair() {
        return sync instanceof FairSync;
    }

    /**
     * Returns the thread that currently owns this lock, or
     * {@code null} if not owned. When this method is called by a
     * thread that is not the owner, the return value reflects a
     * best-effort approximation of current lock status. For example,
     * the owner may be momentarily {@code null} even if there are
     * threads trying to acquire the lock but have not yet done so.
     * This method is designed to facilitate construction of
     * subclasses that provide more extensive lock monitoring
     * facilities.
     *
     * @return the owner, or {@code null} if not owned
     */
    protected Thread getOwner() {
        return sync.getOwner();
    }

    /**
     * Queries whether any threads are waiting to acquire this lock. Note that
     * because cancellations may occur at any time, a {@code true}
     * return does not guarantee that any other thread will ever
     * acquire this lock.  This method is designed primarily for use in
     * monitoring of the system state.
     *
     * @return {@code true} if there may be other threads waiting to
     *         acquire the lock
     */
    public final boolean hasQueuedThreads() {
        return sync.hasQueuedThreads();
    }

    /**
     * Queries whether the given thread is waiting to acquire this
     * lock. Note that because cancellations may occur at any time, a
     * {@code true} return does not guarantee that this thread
     * will ever acquire this lock.  This method is designed primarily for use
     * in monitoring of the system state.
     *
     * @param thread the thread
     * @return {@code true} if the given thread is queued waiting for this lock
     * @throws NullPointerException if the thread is null
     */
    public final boolean hasQueuedThread(Thread thread) {
        return sync.isQueued(thread);
    }

    /**
     * Returns an estimate of the number of threads waiting to acquire
     * this lock.  The value is only an estimate because the number of
     * threads may change dynamically while this method traverses
     * internal data structures.  This method is designed for use in
     * monitoring system state, not for synchronization control.
     *
     * @return the estimated number of threads waiting for this lock
     */
    public final int getQueueLength() {
        return sync.getQueueLength();
    }

    /**
     * Returns a collection containing threads that may be waiting to
     * acquire this lock.  Because the actual set of threads may change
     * dynamically while constructing this result, the returned
     * collection is only a best-effort estimate.  The elements of the
     * returned collection are in no particular order.  This method is
     * designed to facilitate construction of subclasses that provide
     * more extensive monitoring facilities.
     *
     * @return the collection of threads
     */
    protected Collection<Thread> getQueuedThreads() {
        return sync.getQueuedThreads();
    }

    /**
     * Queries whether any threads are waiting on the given condition
     * associated with this lock. Note that because timeouts and
     * interrupts may occur at any time, a {@code true} return does
     * not guarantee that a future {@code signal} will awaken any
     * threads.  This method is designed primarily for use in
     * monitoring of the system state.
     *
     * @param condition the condition
     * @return {@code true} if there are any waiting threads
     * @throws IllegalMonitorStateException if this lock is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this lock
     * @throws NullPointerException if the condition is null
     */
    public boolean hasWaiters(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    /**
     * Returns an estimate of the number of threads waiting on the
     * given condition associated with this lock. Note that because
     * timeouts and interrupts may occur at any time, the estimate
     * serves only as an upper bound on the actual number of waiters.
     * This method is designed for use in monitoring of the system
     * state, not for synchronization control.
     *
     * @param condition the condition
     * @return the estimated number of waiting threads
     * @throws IllegalMonitorStateException if this lock is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this lock
     * @throws NullPointerException if the condition is null
     */
    public int getWaitQueueLength(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    /**
     * Returns a collection containing those threads that may be
     * waiting on the given condition associated with this lock.
     * Because the actual set of threads may change dynamically while
     * constructing this result, the returned collection is only a
     * best-effort estimate. The elements of the returned collection
     * are in no particular order.  This method is designed to
     * facilitate construction of subclasses that provide more
     * extensive condition monitoring facilities.
     *
     * @param condition the condition
     * @return the collection of threads
     * @throws IllegalMonitorStateException if this lock is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this lock
     * @throws NullPointerException if the condition is null
     */
    protected Collection<Thread> getWaitingThreads(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    /**
     * Returns a string identifying this lock, as well as its lock state.
     * The state, in brackets, includes either the String {@code "Unlocked"}
     * or the String {@code "Locked by"} followed by the
     * {@linkplain Thread#getName name} of the owning thread.
     *
     * @return a string identifying this lock, as well as its lock state
     */
    public String toString() {
        Thread o = sync.getOwner();
        return super.toString() + ((o == null) ?
                                   "[Unlocked]" :
                                   "[Locked by thread " + o.getName() + "]");
    }
}

3.2.非公平锁的实现原理

3.2.1.构造方法
    public ReentrantLock() {
        sync = new NonfairSync();
    }
3.2.2.加锁
    public void lock() {
        sync.lock();
    }
        @ReservedStackAccess
        final void lock() {
            if (!initialTryLock())
                acquire(1);
        }  
      
        final boolean initialTryLock() {
            Thread current = Thread.currentThread();
            if (compareAndSetState(0, 1)) { // first attempt is unguarded
                setExclusiveOwnerThread(current);
                return true;
            } else if (getExclusiveOwnerThread() == current) {
                int c = getState() + 1;
                if (c < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(c);
                return true;
            } else
                return false;
        }
3.3.3.使用事例
package org.example.n8;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

@Slf4j(topic = "c.TestReentrantLock")
public class TestReentrantLock {
    public static void main(String[] args) {
        ReentrantLock lock = new ReentrantLock();

//        test加锁(lock);
//        test可重入锁(lock);
//        test尝试获取锁(lock);
//        test超时获取锁(lock);
        test可打断锁(lock);

    }

    private static void test可打断锁(ReentrantLock lock) {
        Thread t1 = new Thread(() -> {
            try {
                TimeUnit.SECONDS.sleep(1);
                lock.lockInterruptibly();
            } catch (InterruptedException e) {
                System.out.println(Thread.currentThread().isInterrupted());
                log.debug("t1线程在获取锁的时候被打断...");
                throw new RuntimeException(e);
            }
            try {
                log.debug("locking...");
            } finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        }, "t1");

        new Thread(()->{
            lock.lock();
            try {
                log.debug("locking...");
                TimeUnit.SECONDS.sleep(10);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            } finally {
                lock.unlock();
            }
        },"t2").start();

        t1.start();
        t1.interrupt();
    }

    private static void test超时获取锁(ReentrantLock lock) {
        new Thread(()->{
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            try {
                if (lock.tryLock(2, TimeUnit.SECONDS)) {
                    try {
                        log.debug("locking...");
                    } finally {
                        log.debug("unlocking...");
                        lock.unlock();
                    }
                }else {
                    log.debug("获取锁失败...");
                }
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        },"t1").start();

        new Thread(()->{
            lock.lock();
            try {
                log.debug("locking...");
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            } finally {
                lock.unlock();
            }
        },"t2").start();
    }

    private static void test尝试获取锁(ReentrantLock lock) {
        new Thread(()->{
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            if (lock.tryLock()) {
                try {
                    log.debug("locking...");
                } finally {
                    log.debug("unlocking...");
                    lock.unlock();
                }
            }else {
                log.debug("获取锁失败...");
            }
        },"t1").start();

        new Thread(()->{
            lock.lock();
            try {
                TimeUnit.SECONDS.sleep(2);
                log.debug("locking...");
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            } finally {
                lock.unlock();
            }
        },"t2").start();
    }

    private static void test可重入锁(ReentrantLock lock) {
        new Thread(()->{
            lock.lock();
            log.debug("第一次加锁locking...");
            lock.lock();
            log.debug("第二次加锁locking...");
            try {
                log.debug("locking...");

            } finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        },"t1").start();
    }

    private static void test加锁(ReentrantLock lock) {
        new Thread(()->{
            lock.lock();
            try {
                log.debug("locking...");
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            } finally {
                lock.unlock();
            }
        },"t1").start();

        new Thread(()->{
            lock.lock();
            try {
                log.debug("locking...");
            } finally {
                lock.unlock();
            }
        },"t2").start();
    }
}

4.读写锁ReentrantReadWriteLock

4.1.使用事例

package org.example.n8;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantReadWriteLock;

@Slf4j(topic = "c.TestReadWriteLock")
public class TestReadWriteLock {
    public static void main(String[] args) throws InterruptedException {
        DataContainer dc = new DataContainer();
//        test读锁不阻塞(dc);
//        test读写阻塞(dc);
        test读读阻塞(dc);
    }

    private static void test读读阻塞(DataContainer dc) throws InterruptedException {
        new Thread(() -> {
            dc.write();
        }, "t1").start();
        Thread.sleep(100);
        new Thread(() -> {
            dc.write();
        }, "t2").start();
    }

    private static void test读写阻塞(DataContainer dc) throws InterruptedException {
        new Thread(() -> {
            dc.read();
        }, "t1").start();
        Thread.sleep(100);
        new Thread(() -> {
            dc.write();
        }, "t2").start();
    }

    private static void test读锁不阻塞(DataContainer dc) {
        new Thread(() -> {
            dc.read();
        }, "t1").start();
        new Thread(() -> {
            dc.read();
        }, "t2").start();
    }
}

// 定义一个数据容器
@Slf4j(topic = "c.DataContainer")
class DataContainer {
    private Object data;
    private ReentrantReadWriteLock rw = new ReentrantReadWriteLock();
    private ReentrantReadWriteLock.ReadLock r = rw.readLock();
    private ReentrantReadWriteLock.WriteLock w = rw.writeLock();

    public Object read() {
        log.debug("获取读锁...");
        r.lock();
        try {
            log.debug("读取数据...");
            TimeUnit.SECONDS.sleep(1);
            return data;
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            log.debug("释放读锁...");
            r.unlock();
        }
    }

    public void write() {
        log.debug("写入数据...");
        w.lock();
        try {
            log.debug("获取写锁...");
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            log.debug("释放写锁...");
            w.unlock();
        }
    }
}

4.2.注意事项

        读锁不支持条件变量
        重入时升级不支持:即持有读锁的情况下去获取写锁,会导致获取写锁永久等待
        重入时降级支持:即持有写锁的情况下去获取读锁
 重入时降级支持事例:
class CachedData {
    Object data;
    // 是否有效,如果失效,需要重新计算 data
    volatile boolean cacheValid;
    final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    void processCachedData() {
        rwl.readLock().lock();
        if (!cacheValid) {
            // 获取写锁前必须释放读锁
            rwl.readLock().unlock();
            rwl.writeLock().lock();
            try {
                // 判断是否有其它线程已经获取了写锁、更新了缓存, 避免重复更新
                if (!cacheValid) {
                    data = ...
                    cacheValid = true;
                }
                // 降级为读锁, 释放写锁, 这样能够让其它线程读取缓存
                rwl.readLock().lock();
            } finally {
                rwl.writeLock().unlock();
            }
        }
        // 自己用完数据, 释放读锁 
        try {
            use(data);
        } finally {
            rwl.readLock().unlock();
        }
    }
}

4.3.应用

读写锁实现一致性缓存,可以并发的读。
class GenericCachedDao<T> {
    // HashMap 作为缓存非线程安全, 需要保护
    HashMap<SqlPair, T> map = new HashMap<>();

    ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
    GenericDao genericDao = new GenericDao();
    public int update(String sql, Object... params) {
        SqlPair key = new SqlPair(sql, params);
        // 加写锁, 防止其它线程对缓存读取和更改
        lock.writeLock().lock();
        try {
            int rows = genericDao.update(sql, params);
            map.clear();
            return rows;
        } finally {
            lock.writeLock().unlock();
        }
    }
    public T queryOne(Class<T> beanClass, String sql, Object... params) {
        SqlPair key = new SqlPair(sql, params);
        // 加读锁, 防止其它线程对缓存更改
        lock.readLock().lock();
        try {
            T value = map.get(key);
            if (value != null) {
                return value;
            }
        } finally {
            lock.readLock().unlock();
        }
        // 加写锁, 防止其它线程对缓存读取和更改
        lock.writeLock().lock();
        try {
            // get 方法上面部分是可能多个线程进来的, 可能已经向缓存填充了数据
            // 为防止重复查询数据库, 再次验证
            T value = map.get(key);
            if (value == null) {
                // 如果没有, 查询数据库
                value = genericDao.queryOne(beanClass, sql, params);
                map.put(key, value);
            }
            return value;
        } finally {
            lock.writeLock().unlock();
        }
    }
    // 作为 key 保证其是不可变的
    class SqlPair {
        private String sql;
        private Object[] params;
        public SqlPair(String sql, Object[] params) {
            this.sql = sql;
            this.params = params;
        }
        @Override
        public boolean equals(Object o) {
            if (this == o) {
                return true;
            }
            if (o == null || getClass() != o.getClass()) {
                return false;
            }
            SqlPair sqlPair = (SqlPair) o;
            return sql.equals(sqlPair.sql) &&
                    Arrays.equals(params, sqlPair.params);
        }
        @Override
        public int hashCode() {
            int result = Objects.hash(sql);
            result = 31 * result + Arrays.hashCode(params);
            return result;
        }
    }
}

注意

以上实现体现的是读写锁的应用,保证缓存和数据库的一致性,但有下面的问题没有考虑
适合读多写少,如果写操作比较频繁,以上实现性能低
没有考虑缓存容量
没有考虑缓存过期
只适合单机
并发性还是低,目前只会用一把锁
更新方法太过简单粗暴,清空了所有 key(考虑按类型分区或重新设计 key
乐观锁实现:用 CAS 去更新

4.4.原理

state的高16为表示读锁,state的低16位表示写锁,加锁是使用cas修改相对应的装状态,具体存在区别。

5.StampedLock读写锁

StampedLock 是 Java 8 引入的一种高性能读写锁,位于 java.util.concurrent.locks 包下。它通过版本戳(stamp) 机制优化了传统读写锁(如 ReentrantReadWriteLock)的性能,支持三种模式的锁操作,适用于读多写少的场景,能显著提升并发效率。

5.1.核心设计理念

StampedLock 的核心是用一个 long 类型的 “版本戳(stamp)” 表示锁的状态,不同的锁模式对应不同的戳值(如正数、负数、零)。线程获取锁时会得到一个戳,释放锁或转换锁模式时需要传入这个戳进行验证,确保操作的原子性和正确性。

相比 ReentrantReadWriteLock,它的优势在于:

  • 支持乐观读模式(非阻塞),读操作无需加锁,适合读操作远多于写操作的场景。
  • 读写锁不支持重入(简化设计,提升性能),但通过戳机制实现了更灵活的锁转换。
  • 写锁与读锁互斥,读锁之间不互斥(同传统读写锁),但乐观读模式下读操作完全无阻塞。

加读锁

long stamp = lock.readLock();
lock.unlockRead(stamp)

加读锁

long stamp = lock.writeLock();
lock.unlockWrite(stamp);
乐观读:StampedLock 支持 tryOptimisticRead() 方法(乐观读),读取完毕后需要做一次戳校验 如果校验通 过,表示这期间确实没有写操作,数据可以安全使用,如果校验没通过,需要重新获取读锁,保证数据安全。
long stamp = lock.tryOptimisticRead();
// 验戳
if(!lock.validate(stamp)){
 // 锁升级
}

5.2.使用事例

package org.example.n8;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.StampedLock;

public class TestStampedLock {
    public static void main(String[] args) throws InterruptedException {
        DataContainerStamped dc = new DataContainerStamped(1);
//        test读读不加锁(dc);
//        test乐观度写锁升级(dc);
    }

    private static void test乐观度写锁升级(DataContainerStamped dc) throws InterruptedException {
        new Thread(() -> {
            dc.read(1);
        }, "t1").start();
        Thread.sleep(500);
        new Thread(() -> {
            dc.write(1000);
        }, "t2").start();
    }

    private static void test读读不加锁(DataContainerStamped dc) throws InterruptedException {
        new Thread(() -> {
            dc.read(1);
        }, "t1").start();
        Thread.sleep(500);
        new Thread(() -> {
            dc.read(0);
        }, "t2").start();
    }
}
@Slf4j(topic = "c.DataContainerStamped")
class DataContainerStamped {
    private int data;
    private final StampedLock lock = new StampedLock();

    public DataContainerStamped(int data) {
        this.data = data;
    }

    public int read(int readTime)  {
        long stamp = lock.tryOptimisticRead();
        log.debug("optimistic read locking...{}", stamp);
        try {
            TimeUnit.SECONDS.sleep(readTime);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
        if(lock.validate(stamp)){
            log.debug("read finish...{}", stamp);
            return data;
        }
        // 锁升级
        log.debug("upgrade read locking...{}", stamp);
        try {
            stamp = lock.readLock();
            log.debug("read lock...{}", stamp);
            TimeUnit.SECONDS.sleep(readTime);
            log.debug("read finish...{}", stamp);
            return data;
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            log.debug("read unlock {}", stamp);
            lock.unlockRead(stamp);
        }
    }

    public void write(int  newData) {
        long stamp = lock.writeLock();
        log.debug("write lock {}",  stamp);
        try {
            TimeUnit.SECONDS.sleep(2);
            data = newData;
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            log.debug("write unlock {}", stamp);
            lock.unlockWrite(stamp);
        }
    }
}

5.3.注意

        StampedLock不支持锁重入

        StampedLock不支持条件变量       

   ReentrantReadWriteLock 的写锁支持条件变量(Condition),但读锁不支持。这是由读写锁的设计逻辑决定的:写锁是独占锁(同一时间仅一个线程持有),符合条件变量对独占性的要求;而读锁是共享锁(多个线程可同时持有),条件变量无法在共享模式下正常工作。

6.Semaphore信号量

6.1.使用事例

package org.example.n8;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;

@Slf4j(topic = "c.TestSemaphore")
public class TestSemaphore {
    public static void main(String[] args) {
        Semaphore semaphore = new Semaphore(3);

        for (int i = 0; i < 10; i++) {
            new Thread(() -> {
                try {
                    semaphore.acquire();
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                try {
                    log.debug("running...");
                    try {
                        TimeUnit.SECONDS.sleep(1);
                    } catch (InterruptedException e) {
                        throw new RuntimeException(e);
                    }
                    log.debug("end...");
                } finally {
                    semaphore.release();
                }
            }, "t" + (1+i)).start();
        }

    }
}

6.2.Semaphore应用

        使用 Semaphore 限流,在访问高峰期时,让请求线程阻塞,高峰期过去再释放许可,当然它只适合限制单机 线程数量,并且仅是限制线程数,而不是限制资源数(例如连接数,请对比 Tomcat LimitLatch 的实现)
        用 Semaphore 实现简单连接池,对比『享元模式』下的实现(用wait notify),性能和可读性显然更好, 注意下面的实现中线程数和数据库连接数是相等的
@Slf4j(topic = "c.Pool")
class Pool {
    // 1. 连接池大小
    private final int poolSize;
    // 2. 连接对象数组
    private Connection[] connections;
    // 3. 连接状态数组 0 表示空闲, 1 表示繁忙
    private AtomicIntegerArray states;
    private Semaphore semaphore;
    // 4. 构造方法初始化
    public Pool(int poolSize) {
        this.poolSize = poolSize;
        // 让许可数与资源数一致
        this.semaphore = new Semaphore(poolSize);
        this.connections = new Connection[poolSize];
        this.states = new AtomicIntegerArray(new int[poolSize]);
        for (int i = 0; i < poolSize; i++) {
            connections[i] = new MockConnection("连接" + (i+1));
        }
    }
    // 5. 借连接
    public Connection borrow() {// t1, t2, t3
        // 获取许可
        try {
            semaphore.acquire(); // 没有许可的线程,在此等待
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        for (int i = 0; i < poolSize; i++) {
            // 获取空闲连接
            if(states.get(i) == 0) {
                if (states.compareAndSet(i, 0, 1)) {
                    log.debug("borrow {}", connections[i]);
                    return connections[i];
                }
            }
        }
        // 不会执行到这里
        return null;
    }
    // 6. 归还连接
    public void free(Connection conn) {
        for (int i = 0; i < poolSize; i++) {
            if (connections[i] == conn) {
                states.set(i, 0);
                log.debug("free {}", conn);
                semaphore.release();
                break;
            }
        }
    }
}

7.CountdownLatch倒计时锁

CountDownLatch 是 Java 并发包(java.util.concurrent)中的一个同步工具类,用于协调多个线程之间的执行顺序,核心作用是:让一个或多个线程等待其他线程完成一系列操作后,再继续执行。

7.1.核心原理

CountDownLatch 基于一个计数器工作:

  • 初始化时指定计数器的初始值(例如 new CountDownLatch(3) 表示需要等待 3 个操作完成)。
  • 当一个线程完成任务后,调用 countDown() 方法,计数器的值减 1。
  • 等待的线程调用 await() 方法,会阻塞直到计数器的值变为 0,此时所有等待的线程被唤醒,继续执行。

可以理解为:CountDownLatch 是一个 “发令枪”,多个线程准备完毕后 “倒计时”,直到最后一个线程完成,所有等待的线程才开始行动。

7.2.关键特性

计数器不可重置:一旦计数器的值减到 0,就无法再恢复到初始值(这一点与 CyclicBarrier 不同,后者可重用)。

多线程协作:可以让多个线程等待一个线程(如主线程等待所有子线程完成),也可以让一个线程等待多个线程(如多个前置任务完成后再执行主线程)。

灵活的等待机制:支持限时等待(await(long timeout, TimeUnit unit)),避免永久阻塞。

7.3.适用场景

并行任务协调:主线程等待多个子线程完成并行任务(如数据分片处理,所有分片完成后合并结果)。

初始化校验:应用启动时,主线程等待多个组件(如数据库连接、缓存加载)初始化完成后,再对外提供服务。

倒计时触发:多个线程同时准备,直到最后一个线程准备完毕,所有线程同时开始执行(如比赛开始前的 “各就各位,预备 —— 开始”)。

7.4.使用事例

package org.example.n8;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CountDownLatch;

@Slf4j(topic = "c.TestCountDownLatch")
public class TestCountDownLatch {
    public static void main(String[] args) {
        CountDownLatch latch = new CountDownLatch(3);

        new Thread(() -> {
            log.debug("子线程1开始");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            log.debug("子线程1结束");
            latch.countDown();
        }).start();


        new Thread(() -> {
            log.debug("子线程2开始");
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            log.debug("子线程2结束");
            latch.countDown();
        }).start();

        new Thread(() -> {
            log.debug("子线程3开始");
            try {
                Thread.sleep(1500);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            log.debug("子线程3结束");
            latch.countDown();
        }).start();


        try {
            log.debug("主线程wait...");
            latch.await();
            log.debug("主线程wait end...");
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
    }
}

7.5.CountDownLatch和join实现线程等待有什么区别

使用join必须等待其他线程等待线程结束,主线程才能继续运行,但是使用CountDownLatch,不需要其他线程结束,只要其他线程都调用countDown方法,主线程就可以运行,也就是说CountDownLatch可以配置线程池使用。使用事例如下:

public static void main(String[] args) {
        CountDownLatch latch = new CountDownLatch(3);
        ExecutorService executorService = Executors.newFixedThreadPool(4);
        executorService.submit(() -> {
            log.debug("子线程1开始");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            log.debug("子线程1结束");
            latch.countDown();
        });

        executorService.submit(() -> {
            log.debug("子线程2开始");
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            log.debug("子线程2结束");
            latch.countDown();
        });

        executorService.submit(() -> {
            log.debug("子线程3开始");
            try {
                Thread.sleep(1500);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            log.debug("子线程3结束");
            latch.countDown();
        });

        executorService.submit(() -> {
            log.debug("主线程开始");
            try {
                latch.await();
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            log.debug("主线程结束");
        });

    }

7.6.游戏玩家加载

private static void test游戏玩家加载() throws InterruptedException {
        ExecutorService executorService = Executors.newFixedThreadPool(10);
        Random random = new Random();
        CountDownLatch latch = new CountDownLatch(10);
        String[] all = new String[10];
        for (int j = 0; j < 10; j++) {
            int index = j;
            executorService.submit(() -> {
                for (int i = 0; i <= 100; i++) {
                    try {
                        Thread.sleep(random.nextInt(100));
                    } catch (InterruptedException e) {
                        throw new RuntimeException(e);
                    }
                    all[index] = i+"%";
                    System.out.print("\r"+Arrays.toString(all));
                }
                latch.countDown();
            });
        }

        latch.await();
        System.out.println();
        System.out.println("游戏开始....");

        executorService.shutdown();
    }

8.CyclicBarrier循环屏障

CyclicBarrier(循环屏障)是 Java 并发包(java.util.concurrent)中的同步工具类,用于让一组线程互相到达某个屏障点(Barrier)后再同时继续执行,且支持重复使用(这是它与 CountDownLatch 的核心区别)。

8.1核心原理

CyclicBarrier 基于 “屏障” 的概念工作:

  • 初始化时指定参与的线程数量( parties ) 和一个屏障动作( barrierAction ,可选)
  • 每个线程执行到屏障点时,调用 await() 方法,该线程会被阻塞,直到所有参与线程都到达屏障点。
  • 当最后一个线程到达屏障点后:
    1. 若指定了 barrierAction,则由最后到达的线程执行该动作(如汇总结果、日志记录)。
    2. 所有阻塞的线程被同时唤醒,继续执行后续逻辑。
  • 屏障可重复使用:所有线程通过屏障后,CyclicBarrier 会重置状态,允许下一轮线程再次使用。

8.2.关键特性

  1. 循环性:与 CountDownLatch 一次性使用不同,CyclicBarrier 可多次重复使用(通过 reset() 方法手动重置,或自动重置)。
  2. 屏障动作:支持在所有线程到达后,由最后一个线程执行一个统一的动作(如数据汇总)。
  3. 中断与超时await() 方法支持中断(抛出 InterruptedException)和超时(await(long timeout, TimeUnit unit)),避免线程永久阻塞。

8.3.适用场景

  1. 多线程协同任务:如数据分片计算(每个线程算一部分,全部完成后汇总)、多阶段任务(所有线程完成第一阶段后,再同时开始第二阶段)。
  2. 并发测试:让多个线程同时开始执行测试逻辑,确保测试的公平性(如模拟 100 个用户同时登录)。
  3. 循环任务场景:需要重复执行多线程协同任务的场景(如定时批量处理,每批任务都需要多线程配合)。

8.4.使用事例

package org.example.n8;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

@Slf4j(topic = "c.TestCyclicBarrier")
public class TestCyclicBarrier {
    public static void main(String[] args) {
        CyclicBarrier cyclicBarrier = new CyclicBarrier(2, () -> {
            log.debug("task1 task2 finish...");
        });
        ExecutorService executorService = Executors.newFixedThreadPool(2);
        for (int i = 0; i < 3; i++) {
            executorService.submit(() -> {
                log.debug("task1 begin...");
                try {
                    Thread.sleep(1000);
                    cyclicBarrier.await();
                } catch (Exception e) {
                    e.printStackTrace();
                }
                log.debug("task1 end...");
            });

            executorService.submit(() -> {
                log.debug("task2 begin...");
                try {
                    Thread.sleep(2000);
                    cyclicBarrier.await();
                }catch (Exception e){
                    e.printStackTrace();
                }
                log.debug("task2 end...");
            });
        }
        executorService.shutdown();
    }
}

9.线程安全类集合

线程安全集合类可以分为三大类:
        遗留的线程安全集合如 Hashtable Vector
        使用 Collections 装饰的线程安全集合,如:
                Collections.synchronizedCollection
                Collections.synchronizedList                
                Collections.synchronizedMap
                Collections.synchronizedSet
                Collections.synchronizedNavigableMap
                Collections.synchronizedNavigableSet
                Collections.synchronizedSortedMap
                Collections.synchronizedSortedSet
        java.util.concurrent.*
                java.util.concurrent.* 下的线程安全集合类,可以发现它们有规律,里面包含三类关键词:Blocking、CopyOnWriteConcurrent。
        Blocking 大部分实现基于锁,并提供用来阻塞的方法
        CopyOnWrite 之类容器修改开销相对较重
        Concurrent 类型的容器内部很多操作使用 cas 优化,一般可以提供较高吞吐量弱一致性
                遍历时弱一致性,例如,当利用迭代器遍历时,如果容器发生修改,迭代器仍然可以继续进行遍 历,这时内容是旧的
                求大小弱一致性,size 操作未必是 100% 准确
                读取弱一致性

9.1.ConcurrentHashMap

9.1.1.使用事例

单词计数

demo(
                () -> new ConcurrentHashMap<String, LongAdder>(),
                (map, words) -> {
                    for (String word : words) {
                        // 注意不能使用 putIfAbsent,此方法返回的是上一次的 value,首次调用返回 null
                        map.computeIfAbsent(word, (key) -> new LongAdder()).increment();
                    }
                }
        );
9.1.2.JDK7 HashMap并发死链

多线程环境下使用了非线程安全的map集合,jdk7的HashMap在添加节点时,对于同一个桶添加元素时采用头插法,在多个线程在添加元素时,同时发生扩容,就会发生死链。

JDK8虽然不采用头插法,但是在多线程环境下扩容会出现其他问题,比如扩容丢失数据。

9.1.3.JDK8的ConcurrentHashMap
重要属性和内部类
// 默认为 0
// 当初始化时, 为 -1
// 当扩容时, 为 -(1 + 扩容线程数)
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小
private transient volatile int sizeCtl;
// 整个 ConcurrentHashMap 就是一个 Node[]
static class Node<K,V> implements Map.Entry<K,V> {}
// hash 表
transient volatile Node<K,V>[] table;
// 扩容时的 新 hash 表
private transient volatile Node<K,V>[] nextTable;
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点
static final class ForwardingNode<K,V> extends Node<K,V> {}
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node
static final class ReservationNode<K,V> extends Node<K,V> {}
// 作为 treebin 的头节点, 存储 root 和 first
static final class TreeBin<K,V> extends Node<K,V> {}
// 作为 treebin 的节点, 存储 parent, left, right
static final class TreeNode<K,V> extends Node<K,V> {}

重要方法

// 获取 Node[] 中第 i 个 Node
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i)
 
// cas 修改 Node[] 中第 i 个 Node 的值, c 为旧值, v 为新值
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)
 
// 直接修改 Node[] 中第 i 个 Node 的值, v 为新值
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)

构造器分析

在构造方法中仅仅计算了 table 的大小,以后在第一次使用时才会真正创建
// initialCapacity 初始容量, 
// float loadFactor 扩容因子
// concurrencyLevel 并发度

    public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel) // Use at least as many bins
            initialCapacity = concurrencyLevel; // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        // tableSizeFor 仍然是保证计算的大小是 2^n, 即 16,32,64 ... 
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
                MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

get流程

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        // spread 方法能确保返回结果是正数
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (e = tabAt(tab, (n - 1) & h)) != null) {
            // 如果头结点已经是要查找的 key
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            // hash 为负数表示该 bin 在扩容中或是 treebin, 这时调用 find 方法来查找
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            // 正常遍历链表, 用 equals 比较
            while ((e = e.next) != null) {
                if (e.hash == h &&
                        ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

put方法

public V put(K key, V value) {
        return putVal(key, value, false);
    }

    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        // 其中 spread 方法会综合高位低位, 具有更好的 hash 性
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K, V>[] tab = table; ; ) {
            // f 是链表头节点
            // fh 是链表头结点的 hash
            // i 是链表在 table 中的下标
            Node<K, V> f;
            int n, i, fh;
            // 要创建 table
            if (tab == null || (n = tab.length) == 0)
                // 初始化 table 使用了 cas, 无需 synchronized 创建成功, 进入下一轮循环
                tab = initTable();
                // 要创建链表头节点
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                // 添加链表头使用了 cas, 无需 synchronized
                if (casTabAt(tab, i, null,
                        new Node<K, V>(hash, key, value, null)))
                    break;
            }
            // 帮忙扩容
            else if ((fh = f.hash) == MOVED)
                // 帮忙之后, 进入下一轮循环
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
// 锁住链表头节点
                synchronized (f) {
                    // 再次确认链表头节点没有被移动
                    if (tabAt(tab, i) == f) {
                        // 链表
                        if (fh >= 0) {
                            binCount = 1;
                            // 遍历链表
                            for (Node<K, V> e = f; ; ++binCount) {
                                K ek;
                                // 找到相同的 key
                                if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    // 更新
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K, V> pred = e;
                                // 已经是最后的节点了, 新增 Node, 追加至链表尾
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K, V>(hash, key,
                                            value, null);
                                    break;
                                }
                            }
                        }
                        // 红黑树
                        else if (f instanceof TreeBin) {
                            Node<K, V> p;
                            binCount = 2;
                            // putTreeVal 会看 key 是否已经在树中, 是, 则返回对应的 TreeNode
                            if ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key,
                                    value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                    // 释放链表头节点的锁
                }

                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        // 如果链表长度 >= 树化阈值(8), 进行链表转为红黑树
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        // 增加 size 计数
        addCount(1L, binCount);
        return null;
    }

    private final Node<K, V>[] initTable() {
        Node<K, V>[] tab;
        int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)
                Thread.yield();
                // 尝试将 sizeCtl 设置为 -1(表示初始化 table)
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                // 获得锁, 创建 table, 这时其它线程会在 while() 循环中 yield 直至 table 创建
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

    // check 是之前 binCount 的个数
    private final void addCount(long x, int check) {
        CounterCell[] as;
        long b, s;
        if (
            // 已经有了 counterCells, 向 cell 累加
                (as = counterCells) != null ||
                        // 还没有, 向 baseCount 累加
                        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)
        ) {
            CounterCell a;
            long v;
            int m;
            boolean uncontended = true;
            if (
                // 还没有 counterCells
                    as == null || (m = as.length - 1) < 0 ||
                            // 还没有 cell
                            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                            // cell cas 增加计数失败
                            !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
            ) {
                // 创建累加单元数组和cell, 累加重试
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            // 获取元素个数
            s = sumCount();
        }
        if (check >= 0) {
            Node<K, V>[] tab, nt;
            int n, sc;
            while (s >= (long) (sc = sizeCtl) && (tab = table) != null &&
                    (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                        break;
                    // newtable 已经创建了,帮忙扩容
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                // 需要扩容,这时 newtable 未创建
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                        (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }
9.1.4.JDK7的ConcurrentHashMap
维护了一个 segment 数组,每个 segment 对应一把锁
优点:如果多个线程访问不同的 segment,实际是没有冲突的,这与 jdk8 中是类似的
缺点:Segments 数组默认大小为16,这个容量初始化指定后就不能改变了,并且不是懒惰初始化

构造器分析

public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // ssize 必须是 2^n, 即 2, 4, 8, 16 ... 表示了 segments 数组的大小
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        // segmentShift 默认是 32 - 4 = 28
        this.segmentShift = 32 - sshift;
        // segmentMask 默认是 15 即 0000 0000 0000 1111
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // 创建 segments and segments[0]
        Segment<K,V> s0 =
                new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                        (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

put流程调用了Segment对象的put方法

public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        // 计算出 segment 下标
        int j = (hash >>> segmentShift) & segmentMask;

        // 获得 segment 对象, 判断是否为 null, 是则创建该 segment
        if ((s = (Segment<K,V>)UNSAFE.getObject
                (segments, (j << SSHIFT) + SBASE)) == null) {
            // 这时不能确定是否真的为 null, 因为其它线程也发现该 segment 为 null,
            // 因此在 ensureSegment 里用 cas 方式保证该 segment 安全性
            s = ensureSegment(j);
        }
        // 进入 segment 的put 流程
        return s.put(key, hash, value, false);
    }

Segment对象的put方法,Segment继承了ReentrantLock

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
        // 尝试加锁
        HashEntry<K,V> node = tryLock() ? null :
                // 如果不成功, 进入 scanAndLockForPut 流程
                // 如果是多核 cpu 最多 tryLock 64 次, 进入 lock 流程
                // 在尝试期间, 还可以顺便看该节点在链表中有没有, 如果没有顺便创建出来
                scanAndLockForPut(key, hash, value);

        // 执行到这里 segment 已经被成功加锁, 可以安全执行
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            int index = (tab.length - 1) & hash;
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) {
                    // 更新
                    K k;
                    if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    e = e.next;
                }
                else {
                    // 新增
                    // 1) 之前等待锁时, node 已经被创建, next 指向链表头
                    if (node != null)
                        node.setNext(first);
                    else
                        // 2) 创建新 node
                        node = new HashEntry<K,V>(hash, key, value, first);
                    int c = count + 1;
                    // 3) 扩容
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                        rehash(node);
                    else
                        // 将 node 作为链表头
                        setEntryAt(tab, index, node);
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
            unlock();
        }
        return oldValue;
    }

rehash 流程,也就是扩容流程

private void rehash(HashEntry<K,V> node) {
        HashEntry<K,V>[] oldTable = table;
        int oldCapacity = oldTable.length;
        int newCapacity = oldCapacity << 1;
        threshold = (int)(newCapacity * loadFactor);
        HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
        int sizeMask = newCapacity - 1;
        for (int i = 0; i < oldCapacity ; i++) {
            HashEntry<K,V> e = oldTable[i];
            if (e != null) {
                HashEntry<K,V> next = e.next;
                int idx = e.hash & sizeMask;
                if (next == null) // Single node on list
                    newTable[idx] = e;
                else { // Reuse consecutive sequence at same slot
                    HashEntry<K,V> lastRun = e;
                    int lastIdx = idx;
                    // 过一遍链表, 尽可能把 rehash 后 idx 不变的节点重用
                    for (HashEntry<K,V> last = next;
                         last != null;
                         last = last.next) {
                        int k = last.hash & sizeMask;
                        if (k != lastIdx) {
                            lastIdx = k;
                            lastRun = last;
                        }
                    }
                    newTable[lastIdx] = lastRun;
                    // 剩余节点需要新建
                    for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                        V v = p.value;
                        int h = p.hash;
                        int k = h & sizeMask;
                        HashEntry<K,V> n = newTable[k];
                        newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                    }
                }
            }
        }
        // 扩容完成, 才加入新的节点
        int nodeIndex = node.hash & sizeMask; // add the new node
        node.setNext(newTable[nodeIndex]);
        newTable[nodeIndex] = node;

        // 替换为新的 HashEntry table
        table = newTable;
    }

get流程:get 时并未加锁,用了 UNSAFE 方法保证了可见性,扩容过程中,get 先发生就从旧表取内容,get 后发生就从新 表取内容

    public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        // u 为 segment 对象在数组中的偏移量
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        // s 即为 segment
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
                (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                    (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

size获取流程:计算元素个数前,先不加锁计算两次,如果前后两次结果如一样,认为个数正确返回 ;如果不一样,进行重试,重试次数超过 3,将所有 segment 锁住,重新计算个数返回

    public int size() {
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum; // sum of modCounts
        long last = 0L; // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    // 超过重试次数, 需要创建所有 segment 并加锁
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }

9.2.LinkedBlockingQueue

LinkedBlockingQueue是 Java 并发包(java.util.concurrent)中基于链表实现的阻塞队列,它支持多线程环境下的高效元素存取,并通过显式锁和条件变量保证线程安全,同时具备阻塞特性(当队列满时写入阻塞,队列空时读取阻塞)。以下是其详细解析:

9.2.1.核心特性
  1. 有界 / 无界特性

    • 构造时可指定容量(new LinkedBlockingQueue(int capacity)),此时为有界队列(容量固定,默认 Integer.MAX_VALUE,约 20 亿,可视为无界)。
    • 若不指定容量,默认容量为 Integer.MAX_VALUE,通常称为 “无界队列”(但本质是极大的有界队列)。
  2. 阻塞行为

    • 当队列满时,put() 方法会阻塞写入线程,直到队列有空闲空间。
    • 当队列空时,take() 方法会阻塞读取线程,直到队列有元素。
  3. FIFO 顺序:基于链表实现,元素按 “先进先出” 顺序存取,类似链表的头尾操作。

  4. 线程安全:通过两把独立锁(分别控制入队和出队)和条件变量实现,支持多线程并发读写。

9.2.2.底层结构

LinkedBlockingQueue 的底层是一个单向链表,核心内部类和字段如下:

public class LinkedBlockingQueue<E> extends AbstractQueue<E>
        implements BlockingQueue<E>, Serializable {

    // 链表节点(存储元素和后继节点)
    static class Node<E> {
        E item;
        Node<E> next;
        Node(E x) { item = x; }
    }

    // 队列容量(若为Integer.MAX_VALUE则视为无界)
    private final int capacity;

    // 队列元素数量(通过AtomicInteger保证原子性)
    private final AtomicInteger count = new AtomicInteger();

    // 头节点(队首):head.item始终为null,头节点的next指向第一个实际元素
    transient Node<E> head;

    // 尾节点(队尾):last.next始终为null,新元素添加到last.next
    private transient Node<E> last;

    // 出队锁(控制take/poll等读操作)
    private final ReentrantLock takeLock = new ReentrantLock();

    // 读线程等待条件(队列空时,读线程在此等待)
    private final Condition notEmpty = takeLock.newCondition();

    // 入队锁(控制put/add等写操作)
    private final ReentrantLock putLock = new ReentrantLock();

    // 写线程等待条件(队列满时,写线程在此等待)
    private final Condition notFull = putLock.newCondition();
}
  • 链表结构head 为头节点(哨兵节点,无实际数据),last 为尾节点,元素通过 next 指针串联。
  • 双锁设计takeLock(读锁)和 putLock(写锁)相互独立,允许读和写操作并行执行(如一个线程入队的同时,另一个线程出队),提升并发效率。
  • 条件变量notEmpty 用于唤醒等待的读线程(当队列有元素时),notFull 用于唤醒等待的写线程(当队列有空间时)。
9.2.3.核心操作原理

入队操作(put(E e)

public void put(E e) throws InterruptedException {
    if (e == null) throw new NullPointerException();
    int c = -1;
    Node<E> node = new Node<E>(e);
    final ReentrantLock putLock = this.putLock;
    final AtomicInteger count = this.count;
    putLock.lockInterruptibly(); // 获取入队锁(可被中断)
    try {
        // 若队列满,写线程在notFull条件上等待
        while (count.get() == capacity) {
            notFull.await();
        }
        enqueue(node); // 将节点添加到队尾
        c = count.getAndIncrement(); // 元素数量+1(原子操作)
        // 若添加后仍有空间,唤醒其他等待的写线程
        if (c + 1 < capacity) {
            notFull.signal();
        }
    } finally {
        putLock.unlock(); // 释放入队锁
    }
    // 若添加前队列为空,唤醒等待的读线程
    if (c == 0) {
        signalNotEmpty(); // 内部会获取takeLock并唤醒notEmpty条件
    }
}

// 入队核心:将节点添加到尾节点后
private void enqueue(Node<E> node) {
    last = last.next = node; // 尾节点的next指向新节点,更新last为新节点
}
  • 步骤:获取入队锁 → 若队列满则等待 → 入队 → 更新计数 → 释放锁 → 必要时唤醒读 / 写线程。
  • 并发安全:入队操作仅需持有 putLock,其他写线程需排队,但读线程可同时执行(因读锁独立)。

出队操作(take()

public E take() throws InterruptedException {
    E x;
    int c = -1;
    final AtomicInteger count = this.count;
    final ReentrantLock takeLock = this.takeLock;
    takeLock.lockInterruptibly(); // 获取出队锁(可被中断)
    try {
        // 若队列空,读线程在notEmpty条件上等待
        while (count.get() == 0) {
            notEmpty.await();
        }
        x = dequeue(); // 从队首移除节点并返回元素
        c = count.getAndDecrement(); // 元素数量-1(原子操作)
        // 若移除后仍有元素,唤醒其他等待的读线程
        if (c > 1) {
            notEmpty.signal();
        }
    } finally {
        takeLock.unlock(); // 释放出队锁
    }
    // 若移除前队列满,唤醒等待的写线程
    if (c == capacity) {
        signalNotFull(); // 内部会获取putLock并唤醒notFull条件
    }
    return x;
}

// 出队核心:从队首移除节点
private E dequeue() {
    Node<E> h = head;
    Node<E> first = h.next; // 第一个实际元素节点
    h.next = h; // 帮助GC
    head = first; // 更新头节点为first
    E x = first.item;
    first.item = null; // 头节点item置空(保持哨兵特性)
    return x;
}
  • 步骤:获取出队锁 → 若队列空则等待 → 出队 → 更新计数 → 释放锁 → 必要时唤醒读 / 写线程。
  • 并发安全:出队操作仅需持有 takeLock,与入队操作的锁独立,支持并行。

非阻塞操作(offer()/poll()

  • offer(E e):尝试入队,若队列满则直接返回 false(不阻塞)。
  • poll():尝试出队,若队列空则直接返回 null(不阻塞)。
  • 原理类似 put()/take(),但不进入条件等待,直接返回结果。
9.2.4.LinkedBlockingQueue ArrayBlockingQueue 的性能比较
        LinkedBlockingQueue 与 ArrayBlockingQueue 的性能比较
        Linked 支持有界,Array 强制有界
        Linked 实现是链表,Array 实现是数组
        Linked 是懒惰的,而 Array 需要提前初始化 Node 数组
        Linked 每次入队会生成新 Node,而 Array Node 是提前创建好的
        Linked 两把锁,Array 一把锁
9.2.5.LinkedBlockingQueue  ConcurrentLinkedQueue的性能比较

ConcurrentLinkedQueue和LinkedBlockingQueue非常像

        也是两把锁,同一时刻允许两个线程同时执行

        dummy节点的引入让两把锁可以锁住不同的对象,避免竞争

        不通用的是ConcurrentLinkedQueue的锁是通过CAS实现的,LinkedBlockingQueue是通过可重入锁ReentrantLock实现的

9.3.CopyOnWriteArrayList

CopyOnWriteArrayList是 Java 并发包(java.util.concurrent)中提供的线程安全的 List 实现,其核心设计思想是 “写时复制”(Copy-On-Write):当对列表进行修改操作(如添加、删除、修改元素)时,会先复制一份底层数组,在新数组上完成修改,再将引用指向新数组;而读操作直接访问原数组,无需加锁。这种机制实现了读操作的无锁化和线程安全,同时简化了并发控制。

9.3.1.核心特性
  1. 线程安全:通过 “写时复制” 机制,避免了读操作和写操作之间的并发冲突,无需加锁即可保证读的安全性。
  2. 读写分离:读操作直接访问原数组,写操作在复制的新数组上进行,读写互不阻塞(读操作不会被写操作阻塞,反之亦然)。
  3. 最终一致性:读操作可能读取到旧版本的数据(因为写操作修改的是新数组,引用切换前旧数组仍可被访问),但最终会看到最新结果。
  4. 不支持 null 元素:与 ArrayList 不同,CopyOnWriteArrayList 不允许存储 null(避免在并发场景下判断 null 时的歧义)。
9.3.2.底层结构
public class CopyOnWriteArrayList<E> implements List<E>, RandomAccess, Cloneable, Serializable {
    // 全局锁,保证写操作的原子性(所有修改操作需获取此锁)
    final transient ReentrantLock lock = new ReentrantLock();

    // 存储元素的底层数组(volatile 修饰,保证多线程间的可见性)
    private transient volatile Object[] array;

    // 获取当前数组(提供给读操作)
    final Object[] getArray() {
        return array;
    }

    // 设置新数组(写操作完成后更新引用)
    final void setArray(Object[] a) {
        array = a;
    }
}
  • array 数组volatile 修饰确保当数组引用被修改(指向新数组)时,所有线程能立即看到最新的数组引用。
  • lock 锁:所有写操作(addremove 等)必须先获取此锁,保证同一时间只有一个线程执行修改操作,避免多线程复制数组导致的混乱。
9.3.3.核心操作原理
读操作(get(int index)
public E get(int index) {
    return get(getArray(), index); // 直接访问当前数组,无锁
}

private E get(Object[] a, int index) {
    return (E) a[index];
}
  • 无锁化:读操作直接获取当前 array 数组(通过 getArray()),然后访问指定索引的元素,整个过程无需加锁,效率极高。
  • 可能读取旧数据:如果读操作执行时,有写操作正在进行(已复制新数组但未更新 array 引用),读操作会继续访问旧数组,因此可能读到修改前的数据(最终一致性)。
写操作(add(E e)
public boolean add(E e) {
    final ReentrantLock lock = this.lock;
    lock.lock(); // 加锁,确保唯一线程执行修改
    try {
        Object[] elements = getArray(); // 获取当前数组
        int len = elements.length;
        // 复制新数组(长度+1)
        Object[] newElements = Arrays.copyOf(elements, len + 1);
        newElements[len] = e; // 在新数组中添加元素
        setArray(newElements); // 更新数组引用为新数组
        return true;
    } finally {
        lock.unlock(); // 释放锁
    }
}
  • 步骤
    1. 获取全局锁,确保独占修改权。
    2. 复制当前数组到新数组(长度 + 1)。
    3. 在新数组中完成添加操作。
    4. 将 array 引用指向新数组(volatile 保证可见性)。
    5. 释放锁。
  • 写操作开销大:每次修改都需要复制整个数组,当数组元素较多时,会消耗大量内存和 CPU 资源,且可能触发 GC。
迭代操作(iterator()

CopyOnWriteArrayList 的迭代器是不可修改的(不支持 removeadd 等操作,否则抛 UnsupportedOperationException),且基于迭代器创建时的数组快照进行遍历:

public Iterator<E> iterator() {
    return new COWIterator<E>(getArray(), 0); // 传入当前数组的快照
}

private static class COWIterator<E> implements ListIterator<E> {
    private final Object[] snapshot; // 迭代器创建时的数组快照
    private int cursor;

    private COWIterator(Object[] elements, int initialCursor) {
        cursor = initialCursor;
        snapshot = elements; // 保存当前数组的引用
    }

    public E next() {
        // 遍历快照数组
        if (!hasNext()) throw new NoSuchElementException();
        return (E) snapshot[cursor++];
    }
}
  • 快照特性:迭代器一旦创建,就基于当时的数组快照遍历,后续对列表的修改(如 addremove)不会影响迭代器的遍历结果(因为修改的是新数组)。
  • 无并发异常:避免了 ArrayList 迭代时的 ConcurrentModificationException(快速失败机制),但可能遍历到旧数据。
9.3.4.优缺点与适用场景
优点:
  1. 读操作高效:无锁设计,适合读多写少的场景,读操作性能远高于 Collections.synchronizedList(后者读操作也需加锁)。
  2. 线程安全简单:无需手动同步,底层通过 “写时复制” 和锁机制保证线程安全。
  3. 迭代稳定:迭代器不会抛出 ConcurrentModificationException,适合需要长时间遍历的场景。
缺点:
  1. 写操作开销大:每次修改都需复制整个数组,内存占用翻倍,且大数组复制耗时。
  2. 数据一致性弱:读操作可能读取到旧数据,不适合需要强一致性的场景。
  3. 内存占用高:复制数组时会同时存在新旧两个数组,高并发写场景下可能导致内存溢出(OOM)。
适用场景:
  • 读多写少的场景(如配置缓存、静态数据列表):例如系统启动时加载配置项,之后很少修改,但频繁读取。
  • 对数据一致性要求不高的场景:允许短暂的新旧数据不一致,最终能同步即可。
  • 避免迭代并发异常的场景:需要安全遍历,不希望因修改导致迭代失败。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值