3.线性分类器与非线性分类器的区别与优劣?

本文探讨了线性与非线性分类器的区别,详细解释了两者的定义、适用场景及优缺点。线性分类器如LR、贝叶斯分类,计算简单但拟合能力有限;非线性分类器如决策树、RF,拟合能力强但易过拟合,计算复杂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先线性和非线性是针对模型参数和输入特征来讲的:

比如输入x,模型y=ax+ax^2那么就是非线性模型,如果输入是x和X^2则模型是线性的。

 再看定义考虑二类的情形,所谓线性分类器即用一个超平面将正负样本分离开,表达式为 y=wx 。这里是强调的是平面。而非线性的分类界面没有这个限制,可以是曲面,多个超平面的组合等。

【如果模型是参数的线性函数,并且存在线性分类面,那么就是线性分类器,否则不是。SVM两种都有(看线性核还是高斯核)。】

线性分类器可解释性好,计算复杂度较低,不足之处是模型的拟合效果相对弱些。

非线性分类器效果拟合能力较强,不足之处是数据量不足容易过拟合、计算复杂度高、可解释性不好。

常见的线性分类器有:LR,贝叶斯分类,单层感知机、线性回归

常见的非线性分类器:决策树、RF、GBDT、多层感知机

SVM两种都有(看线性核还是高斯核)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值