POJ - 1050 To the Max (最大子段和 子矩阵和最大 降维)

题目链接:

http://poj.org/problem?id=1050

题目:

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner: 

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15

题目大意:

给你一个二维矩阵,让你求一个子矩阵,使得子矩阵的和最大。

题目分析:

首先,先想一下无长度限制的最大字段和问题如何解决0.0 只需O(n)扫描该数列,不断把新的数加入子段,当子段和变成负数时,就把当前子段清空。扫描过程中出现的最大子段和就是所求。

那么,二维的应该怎么做的。我们可以想办法把二维的压缩成一维的。怎么压缩呢?枚举i,j,使得temp【k】=a【i】+a【i+1】+.....+a【j】,这样,枚举所有的 i j 分别求解,记录最大值即可。

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;
const int MAXN = 100 + 100;
int a[MAXN][MAXN], temp[MAXN];

int GetLineMaxSum(int *num, int n) {
    int ans = int(-1e9), temp = 0;
    for (int i = 1; i <= n; i++) {
        if (temp + num[i] >= 0) {
            temp += num[i];
            ans = max(temp, ans);
        } else
            temp = 0;
    }
    return ans;
}

int main() {
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            scanf("%d", &a[i][j]);
    int ans = (int) -1e9;
    for (int i = 1; i <= n; i++) {
        for (int j = i; j <= n; j++) {
            for (int k = 1; k <= n; k++) {
                temp[k] = 0;
                for (int l = i; l <= j; l++)
                    temp[k] += a[k][l];
            }
            ans = max(GetLineMaxSum(temp, n), ans);
        }
    }
    printf("%d\n", ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值