数据挖掘路上点点滴滴,记录超参优化的常用手段,最近在学习自动化超参寻优,持续更新。
1.K折交叉验证参数
from sklearn.model_selection import cross_val_score,KFold
定义交叉验证规则
n_folds = 5
rmse=[]
def rmsle_cv(model):
kf = KFold(n_folds, shuffle=True, random_state=42).get_n_splits(train.values)
score= np.sqrt(-cross_val_score(model, train.values, y_train, scoring="neg_mean_squared_error", cv = kf))
rmse.append(np.mean(score))
return(rmse)
2.管道并行调参
单个模型