DP典型模型。。。

一、01背包

有N件物品和一个容量为V的背包。第i件物品的价格(即体积,下同)是w[i],价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这是最基础的背包问题,总的来说就是:选还是不选,这是个问题<( ̄ˇ ̄)/

相当于用f[i][j]表示前i个背包装入容量为v的背包中所可以获得的最大价值。

对于一个物品,只有两种情况

  情况一: 第i件不放进去,这时所得价值为:f[i-1][v]

  情况二: 第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i] 

状态转移方程为:f[i][v] = max(f[i-1][v], f[i-1][v-w[i]]+c[i])

二、DAG

对于DAG最长(短)路,有两种“对称”的状态定义方式:

状态1:设d(i)为从i出发的最长路,则d(i)=max{d(j)+1|(i,j)∈E}

状态2:设d(i)为以i结束的最长路,则d(i)=max{d(j)+1|(j,i)∈E}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值