旷视唐文斌:你到底给谁创造了什么样的价值?AI产品灵魂拷问

落地,是2019年AI行业的共同话题,创造价值、降本增效,成为行业共识。

作为AI头雁公司、也即将成为AI创业第一股的旷视,又是怎样看待落地这个话题的?

而作为一位技术领袖,旷视联合创始人兼CTO唐文斌,又认为当下环境下有哪些技术创新的机会?

在MEET2020智能未来大会现场,作为在行业中摸爬滚打八年的实践者,唐文斌用四个字解答了人工智能落地的议题——价值创造。

关于MEET2020智能未来大会:量子位主办,现场20多位行业大咖分享,1000多名行业观众参与,线上有近百万从业者通过直播参与观看和互动,包括新华社在内的数十家主流媒体报道,活动整体线上总曝光量超过千万。

要点

1、 AI落地必须回答产品经理灵魂拷问:你到底给谁创造了什么样的价值?

2、 AI的价值主要体现在三个方面:成本优化、效率提升、体验增强。

3、 AI在不同行业发展的速度不一样,有难有易,更容易发展起来的,是那些给予AI试错机会的场景。

4、 AIoT 是人工智能技术与产业深度结合的必经之路,因为硬件成本逐渐变得更低,5G让连接变得更迅捷,在这些基础之上实现非常好的IoT的连接后,就能够产生更多数据,让AI算法实现快速突破。

5、 AIoT在体系下有且仅有三种角色,分别是感知器、决策器、执行器,每个部分都有创新机会。

唐文斌演讲分享全文

注:量子位在不改变原意的基础上进行了编辑整理

旷视唐文斌:你到底给谁创造了什么样的价值?AI产品灵魂拷问

 

谢谢大家!谢谢量子位、谢谢主持人对我们的介绍,其实AI公司做的事情并非光鲜亮丽,反而非常的实际、非常的累,所以今天我想讲点接地气的事情。

现在很多人都在讲AI,我们也可以看到AI技术确实给不同场景带来了很多应用,机器学习、深度学习都给计算机视觉、语音识别,NLP等一系列的技术提供了好的手段,使其性能有大幅度的增长。

因此,这也给不同产业带来了不一样的价值,从技术到产业落地的过程已经在实践、在发展了。

举个例子,我们现在可以通过计算机视觉帮助制造业厂商做缺陷检测,用机器人帮仓储物流行业降本增效,用AI的方式让你提前测试某款化妆品、衣服的上身效果,不用再出门去商场了。

不管是降低成本、提升效率还是增强体验,在很多场景中,AI都是用这样的方式来产生价值的。

但是这件事情并没有大家想象中的那么好。

在AI的热度之下,其实企业对AI如何落地、如何使用、如何给自己带来价值,是没有那么清楚的,落地的过程也没那么容易,这也是我一上来讲我们做的事情并没有那么光鲜,反而非常累的原因。

AI落地回归价值本身

旷视唐文斌:你到底给谁创造了什么样的价值?AI产品灵魂拷问

 

这是Gartner统计的阻碍企业应用AI的原因,其中包括现有员工缺乏相关的技能、对AI的作用和用途不了解、缺乏数据、系统整合起来比较麻烦、场景不清晰、战略不清晰、隐私安全保护、价值不好衡量……一大堆的问题,其中有几个问题是比较关键的。

首先,我们做一个应用产品,需要尽可能控制成本,不管是算法研发的成本,还是技术应用的成本,我们必须要算这个账。这项技术/产品地使用带来的价值增量到底有多大?如果企业不采用这项技术/产品,成本相对而言是更低还是更高?你的ROI怎么样?这是我们必须要回答的问题。

第二,当我们在一个特定场景中落地的时候,需要一个完整的解决方案。如果你的方案不完整,不能帮用户解决切实的问题,企业怎么会用起来呢?所以需要明确的落地方案。

第三,需要更多的专业人员。因为理解技术和理解场景这两种知识往往分布在不同的人群,需要两类专业人员结合到一起,才能够深入到场景当中解决行业痛点、给客户带来真正的价值。

今天我们讲AI技术讲了很多,但AI本质上只是一个技术实现手段,最终大家都要回答产品经理的灵魂拷问:

你到底应用AI在这个场景给谁创造了什么样的价值?为什么你能行?为什么是现在?

这是最根本的问题,AI带来的价值有多大?客户愿不愿意用?

对于技术公司来讲,我们也需要回答这样的问题。我们需要从价值创造的角度、从需求侧来看是不是真的解决用户的痛点,技术应用能不能成规模,我们才会选择做这样的方向。

反过来讲,我们也要考虑技术能不能满足这样的场景。

旷视唐文斌:你到底给谁创造了什么样的价值?AI产品灵魂拷问

 

任何技术,不管是人脸识别还是自动驾驶,都必须回答一个问题:你的技术成熟吗?性能足够解决这些问题吗?

我认为自动驾驶应该是从低速到高速的发展路径,先做低速自动驾驶,再做高速自动驾驶;应该是从受限场景到开放场景;应该是从运货到运人。因为自动驾驶是一个肩负着极重社会责任责任的应用,价值极其大,最终必将被人类所征服。但是它的技术也许需要三年、五年,或者十年,甚至更长的时间才能成熟。

自动驾驶是一个价值极其大的场景,自动驾驶必将被人们所征服。

所以我们在思考任何一个场景的时候,都需要回答本质问题:

你的价值到底够不够大?

技术能不能满足用户需求?

只有这两点结合起来,才能够给这个场景真正地创造价值。

从做错了也可以补救的场景开始

旷视唐文斌:你到底给谁创造了什么样的价值?AI产品灵魂拷问

 

正是因为AI落地应用有需求侧的问题,有供给侧的技术问题,所以我们会看到不同的行业发展的速度不一样。有一些场景会相对简单,有些场景会相对的难。那什么场景更容易发展起来呢?我们觉得要先从你做错了也可以补救的场景开始

举个例子,比如说我们现在做缺陷检测。缺陷检测场景的核心是“宁可错杀一千,不可放过一个”,错杀就错杀了,人工再来一遍就好了,通过人机结合的方式可以做到一个很好的体验。

此外在视觉识别的很多场景下,虽然AI只是起到辅助性的作用,但它帮助人提升效率、降低成本,在这些场景下,错误是可以补救的。所以虽然这种场景下AI的精度很重要,但它并没有那么关系重大,还有一定的容错率。

而在一些成败攸关的领域,比如自动驾驶,还有我们在做的生产制造、物流,都是一些更偏向主营业务线上的工具,我们有客户就提到:“如果你导致我的生产线停产几分钟,你就要给我相应的赔偿。”

因为任何意外停顿都会给客户的生产线带来巨大损失,在这样事关重大的场景,AI是不能出错的,否则付出的代价是很大的。

因此我们衡量AI落地领域热度的坐标系里有两个轴,一个轴是价值大不大,价值越大,这个领域越热门;另一个轴是技术行不行,技术越好,这个领域就会越热门。

所以AI可以赋能非常多的行业,但是当下这些行业还处在发展周期的不同位置上

现在是发展AI特别好的时机,大家都在讲AIoT,AI+IoT是特别干柴烈火的场景,因为硬件成本逐渐变得更低,5G让连接变得更迅捷,在这些基础之上实现非常好的IoT的连接后,就能够产生更多数据,让AI算法实现快速突破,新技术也就得到了更好的结合,能够被应用到各种场景中。

AIoT的三个角色:感知、决策、执行

我分享一下旷视对于AIoT的理解。我们认为整个AIoT体系下有且仅有三种角色,分别叫感知器、决策器、执行器。道理其实很简单,比如人用眼睛和耳朵做感知,用大脑做决策,用手和脚做执行,任何一个场景都是这样的闭环架构。

举个例子,比如我们有一个产品是人脸识别门禁,就是特别简单的AIoT场景。感知环节是用摄像头拍人脸;决策环节是对人脸进行判断,如果这个人是公司的员工或访客,就把门打开;执行器就是那个门。这就是非常简单的场景。

再比如我们给日本客户做了一个演示,控制很多的机械臂、传送带、AGV(自动导引车,有轮子的移动机器人),帮助仓库、工厂实现自动化。这里面的感知环节,是有很多的摄像头对货物、场景、操作者进行感知,通过IoT的方式收集设备的数据;决策环节就是决定机械臂什么时候该动,小车什么时候去哪个地方接货物、走什么路径、送到哪里去;最后是执行需要有一个好的硬件载体做执行。

感知、决策、执行,这是我们做AIoT的框架和逻辑。

AI也好,IoT也好、AIoT最终还是要回到价值,我们到底给什么场景、什么客户、在什么样的情形下带来价值。

价值主要是三个方面:成本优化、效率提升、体验增强。所以我们必须思考如何能够给客户带来这方面的价值。

因此我们判断一个场景该不该做,也是通过前面这些方式。我们要考虑ROI,要考虑给客户带来了什么样的回报,要看技术是否成熟,场景是否够大,如何能实现规模化

现在,任何一个场景中都需要很多算法,比如说视觉识别在工业场景中的应用,可能需要上千个算法去识别不同的东西。
所以,低成本、大规模产生算法,是AI赋能得以迅速推广的关键。

那么视觉算法如何低成本实现呢?有没有批量化生产这些算法的机制?

旷视的解决之道是做了一个底层的算法平台,叫Brain++。Brain++做的事情就是通过高效的深度学习的平台,更有效、低成本地生产算法,让研究员更快生产出他们想要的算法,通过AutoML的方式,针对已经规范好的场景,自动化生成算法。

感知层的算法、决策层的优化算法、控制层的控制算法,都可以通过Brain++降低生产成本,也降低了AI应用到一个场景的成本,让AI落地到更多产业中去。

基于算法,能够形成行业的应用软件和平台软件,比如在不同场景中需要不一样的应用软件。那么这些应用软件是否有好的PaaS层、提供好的共性、提供更低成本的落地方式,关系到整个过程能否实现低成本化,实现贴近使用场景,这是非常关键的事情。

旷视在做什么呢?我们基于Brain++算法平台,深耕三个主要的应用场景。

第一个场景以手机为终端,去赋能手机,让手机具备识别人脸的能力,具备识别各种信息的能力,能够刷脸解锁,能够把照片变得更漂亮,让相机变得更智能。

第二个是城市物联网,以相机为终端,通过分析相机中的数据,让城市变得更加的便捷和安全。

最后一个场景是供应链物联网,就是前面讲的把机器人、机械臂、AGV等一系列的自动化的设备连接起来,通过视觉的方式提供完整的解决方案,给仓库、工厂降本增效。

旷视唐文斌:你到底给谁创造了什么样的价值?AI产品灵魂拷问

 

这是我们支持的天猫超市的一个仓库,大概用了400多台机器人,来帮助天猫超市完成整个京津冀地区的发货。如果在座的各位在北京去下天猫超市的订单,很有可能是我们的机器人系统把货发给你的。

对于旷视这样的技术公司来说,AI的场景其实是有巨大机会的,因为AI作为一个很好的手段,可以给不同的场景带来不同的价值。

具体怎么去创新呢?放在刚才感知、决策、执行的框架下来看,其实每一个环节都有创新的机会,都有做出足够好的差异化产品的机会:

我们可以做出不一样的传感器,通过感知算法加上新形态的传感设备,实现更好的感知,面向更多感知维度,提高精度,实现更好的集成度。

我们也可以做更好的决策器,这能提供很大的价值,比如解决仓库里大量机器人的统一调度、统一运行问题,需要优化的算法,需要一个决策器;如何让收集来的海量数据产生对场景有价值的计算方式和业务模型,这些都是在决策器上可以做创新的点。

在执行器上,我们也可以做很多不一样的执行器、不一样的自动化的装置、不一样的设备。AI+IoT对于场景能够带来非常多的价值,旷视作为AIoT方向的践行者,我们最早从感知出发,现在从感知逐渐迈向决策、迈向执行,也希望通过这些技术方式,最终给客户创造更大的价值。

这就是我们现在在做的事情,谢谢大家。

— 完 —

飞思卡尔智能车竞赛是一项备受关注的科技赛事,旨在激发学生的创新和实践能力,尤其是在嵌入式系统、自动控制和机器人技术等关键领域。其中的“电磁组”要求参赛队伍设计并搭建一辆能够自主导航的智能车,通过电磁感应线圈感知赛道路径。本压缩包文件提供了一套完整的电磁组智能车程序,这是一套经过实战验证的代码,曾在校级比赛中获得第二名的优异成绩。 该程序的核心内容可能涉及以下关键知识点: 传感器处理:文件名“4sensor”表明车辆配备了四个传感器,用于获取环境信息。这些传感器很可能是电磁感应传感器,用于探测赛道上的导电线圈。通过分析传感器信号的变化,车辆能够判断自身的行驶方向和位置。 数据采集与滤波:在实际运行中,传感器读数可能受到噪声干扰,因此需要进行数据滤波以提高精度。常见的滤波算法包括低通滤波、高斯滤波和滑动平均滤波等,以确保车辆对赛道的判断准确无误。 路径规划:车辆需要根据传感器输入实时规划行驶路径。这可能涉及PID(比例-积分-微分)控制、模糊逻辑控制或其他现代控制理论方法,从而确保车辆能够稳定且快速地沿赛道行驶。 电机控制:智能车的驱动通常依赖于直流电机或无刷电机,电机控制是关键环节。程序中可能包含电机速度和方向的调节算法,如PWM(脉宽调制)控制,以实现精准的运动控制。 嵌入式系统编程:飞思卡尔智能车的控制器可能基于飞思卡尔微处理器(例如MC9S12系列)。编程语言通常为C或C++,需要掌握微控制器的中断系统、定时器和串行通信等功能。 软件架构:智能车软件通常具有清晰的架构,包括任务调度、中断服务程序和主循环等。理解和优化这一架构对于提升整体性能至关重要。 调试与优化:程序能够在比赛中取得好成绩,说明经过了反复的调试和优化。这可能涉及代码效率提升、故障排查以及性能瓶颈的识别和解决。 团队协作与版本控制:在项目开发过程中,团队协作和版本控制工具(如Git)的应用不可或缺,能够保
双闭环直流电机调速系统是一种高效且应用广泛的直流调速技术。通过设置转速环和电流环两个闭环,系统能够对电机的转速和电流进行精准控制,从而提升动态响应能力和稳定性,广泛应用于工业自动化领域。 主电路设计:主电路采用三相全控桥整流电路,将交流电转换为可调节的直流电,为电机供电。晶闸管作为核心元件,通过调节控制角α实现输出电压的调节。 元部件设计:包括整流变压器、晶闸管、电抗器等元件的设计与参数计算,这些元件的性能直接影响系统的稳定性和效率。 保护电路:设计过载保护、短路保护等保护电路,确保系统安全运行。 驱动电路:设计触发电路和脉冲变压器,触发电路用于触发晶闸管导通,脉冲变压器用于传递触发信号。 控制器设计:系统核心为转速调节器(ASR)和电流调节器(ACR),分别对转速和电流进行调控。检测电路用于采集实际转速和电流值并反馈给调节器。 仿真分析:利用MATLAB/SIMULINK等工具对系统进行仿真分析,验证其稳定性和性能指标是否达标。 方案确定与框图绘制:明确系统构成及各模块连接方式。 主电路设计:选择整流电路形式,设计整流变压器、晶闸管等元部件并计算参数。 驱动电路设计:设计触发电路和脉冲变压器,确保晶闸管准确触发。 控制器设计: 转速调节器(ASR):根据转速指令调整实际转速。 电流调节器(ACR):根据ASR输出指令调整电流,实现快速响应。 参数计算:计算给定电压、调节器、检测电路、触发电路和稳压电路的参数。 仿真分析:通过软件模拟系统运行状态,评估性能。 电气原理图绘制:完成调速控制电路的电气原理图绘制。 双闭环控制策略:转速环在外,电流环在内,形成嵌套结构,提升动态响应能力。 晶闸管控制角调节:通过改变控制角α调节输出电压,实现转速平滑调节。 仿真分析:借助专业软件验证设计的合理性和有效性。 双闭环直流电机调速系统设计涉及主电路、驱动电路和控制器设计等多个环节,通过仿
《编译原理》是计算机科学中一门极为重要的课程,主要探讨如何将高级程序设计语言转换成机器可执行的指令。清华大学的张素琴教授在这一领域有着深厚的学术造诣,其编译原理课后习题答案对于学习者而言是非常珍贵的资源。这份压缩文件详细解析了课程中所涉及的概念、理论和方法的实践应用,目的是帮助学生更好地理解编译器设计的核心内容。 编译原理的核心知识点主要包括以下几点: 词法分析:作为编译过程的首要环节,词法分析器会扫描源代码,识别出一个个称为“标记”(Token)的最小语法单位。通常借助正则表达式来定义各种标记的模式。 语法分析:基于词法分析产生的标记流,语法分析器依据文法规则构建语法树。上下文无关文法(CFG)是编译器设计中常用的一种形式化工具。 语义分析:这一步骤用于理解程序的意义,确保程序符合语言的语义规则。语义分析可分为静态语义分析和动态语义分析,前者主要检查类型匹配、变量声明等内容,后者则关注运行时的行为。 中间代码生成:编译器通常会生成一种高级的中间表示,如三地址码或抽象语法树,以便于后续的优化和目标代码生成。 代码优化:通过消除冗余计算、改进数据布局等方式提升程序的执行效率,同时不改变程序的语义。 目标代码生成:根据中间代码生成特定机器架构的目标代码,这一阶段需要考虑指令集体系结构、寄存器分配、跳转优化等问题。 链接:将编译后的模块进行合并,解决外部引用,最终形成一个可执行文件。 错误处理:在词法分析、语法分析和语义分析过程中,编译器需要能够检测并报告错误,例如语法错误、类型错误等。 张素琴教授的课后习题答案覆盖了上述所有核心知识点,并可能包含实际编程练习,比如实现简单的编译器或解释器,以及针对特定问题的解题策略。通过解答这些习题,学生可以加深对编译原理的理解,提升解决问题的能力,为今后参与编译器开发或软件工程实践奠定坚实的基础。这份资源不仅是学习编译原理的有力辅助材料,也是
内容概要:本文介绍了一种基于环形展开架构的全异步7位逐次逼近寄存器(SAR)模数转换器(ADC),其采样速率为1.75 GS/s,采用3纳米CMOS工艺制造。为了降低功耗并减少设计复杂度,提出了一种无存储器的全异步SAR架构,并引入了双尾反馈(DTFB)动态比较器来满足所需速度并最小化热噪声。该ADC实现了37/49 dB的信噪比(SNDR)/无杂散动态范围(SFDR),面积为0.00055平方毫米,功耗仅为0.69毫瓦。此外,它具有最佳的Walden品质因数(FoMw)为6.9 fJ/转换步长,适用于224 Gb/s PAM4 SerDes接收器中的64路时间交织(TI) ADC系统。 适合人群:从事高速模拟电路设计、SerDes接口开发以及对高精度ADC有研究兴趣的专业人士和研究人员。 使用场景及目标:①适用于需要高带宽、低延迟和低功耗的数据中心网络通信设备;②支持大规模时间交织ADC阵列应用,如高速光纤通信系统;③优化ADC性能,特别是针对PAM4信号处理和高速数据传输的应用。 其他说明:本文详细介绍了ADC的关键技术细节,包括但不限于环形展开SAR架构、DTFB比较器设计、门控提升采样保持开关以及各种校准机制。此外,还展示了实测结果并与现有先进技术进行了对比,证明了所提出的ADC在性能和能效方面的优势。该设计方案不仅在单通道ADC中表现出色,在多通道应用场景下同样具备显著的竞争优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值