先看到成员变量
//为了实现有序访问HashMap中的数据,使用一个额外双向链表来维护数据的顺序
//双向链表的头节点
transient LinkedHashMap.Entry<K,V> head;
//双向链表的尾节点
transient LinkedHashMap.Entry<K,V> tail;
//默认为false,可以构造函数设置
//为true时,被访问的数据会移动到双向链表的尾部
//为false时,则按照插入的顺序维持双向链表
final boolean accessOrder;
看到父类HashMap的put方法,之前的文章已经讲过HashMap,这里着重看LinkedHashMap的方法
public V put(K key, V value) {
//第五个参数(evict)为true
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
//看这里,LinkedHashMap重写了该方法,返回的是LinkedHashMap的node,含有before和after属性,来维持一个双向链表。
//实例化node,并将node加入到双向链表中
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//看这里,新插入的节点的value替换了老的节点(e)的value,如果accessOrder为true 移动e到双向链表的尾部
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
//看这里,可能会从HashMap移除双向链表中的头节点
afterNodeInsertion(evict);
return null;
}
newNode方法
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
//返回LinkedHashMap的node,比起HashMap的node,多了before和after属性
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
//将新插入的节点,放在双向链表的队尾
linkNodeLast(p);
return p;
}
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
//获取尾节点赋值给last
LinkedHashMap.Entry<K,V> last = tail;
//将尾节点修改为p
tail = p;
//如果尾节点为空,说明双向链表还没初始化,设置头节点为p
if (last == null)
head = p;
else {
//设置p的前驱结点为last
p.before = last;
//设置last的后继节点为p
last.after = p;
}
}
afterNodeAccess方法
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
//如果accessOrder 为 true 且 尾节点不是e
//tail尾节点赋值给last
if (accessOrder && (last = tail) != e) {
//e赋值给p
//p的前驱节点为b
//p的后继节点为a
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//由于要移动到尾部,设置后继节点为空
p.after = null;
//如果b没有值,说明自己是头节点
if (b == null)
//将头节点设置赋值为a
head = a;
//前驱节点b存在
else
//将b的后继节点设置为a
b.after = a;
//如果a不为空
if (a != null)
//将a的前取节点设置为b
a.before = b;
//如果a为空,没有后继节点
else
//b赋值给last
last = b;
//如果last为空
if (last == null)
//将头节点设置为p
head = p;
//如果last不为空
else {
//将p的前驱节点色设置为last
p.before = last;
//将last的后继节点设置为p
last.after = p;
}
//将尾节点设置为p
tail = p;
//modCount加一
++modCount;
}
}
afterNodeInsertion方法
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
//如果evict为true , 且first赋值为头结点 不为空 , 且 removeEldestEntry返回为true
if (evict && (first = head) != null && removeEldestEntry(first)) {
//获取头结点
K key = first.key;
//调用父类的removeNode从HashMap中移除该节点
removeNode(hash(key), key, null, false, true);
}
}
//可以继承LinkedHashMap重写该方法返回true
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
//com.mysql.jdbc.util.LRUCache继承了LinkedHashMap重写了removeEldestEntry
public class LRUCache extends LinkedHashMap<Object, Object> {
private static final long serialVersionUID = 1L;
protected int maxElements;
public LRUCache(int maxSize) {
//将accessorder设置为true!
super(maxSize, 0.75F, true);
//设置LRUCache中最多存放的数据量
this.maxElements = maxSize;
}
@Override
protected boolean removeEldestEntry(Entry<Object, Object> eldest) {
//当HashMap中的元素个数超过了maxElements,返回true,从HashMap中移除双向链表头结点
return (size() > this.maxElements);
}
}
再来get方法,LinkedHashMap重写了父类的get方法
public V get(Object key) {
Node<K,V> e;
//调用父类的getNode从HashMap中找到该节点
if ((e = getNode(hash(key), key)) == null)
return null;
//如果accessOrder为true , 调用afterNodeAccess方法将该节点移动到双向链表的尾部
if (accessOrder)
afterNodeAccess(e);
return e.value;
}
再来看到父类的remove方法
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
//看这里,HashMap中对node的引用已经断开了,现在要断开双向链表对node的引用
afterNodeRemoval(node);
return node;
}
}
return null;
}
afterNodeRemoval方法
void afterNodeRemoval(Node<K,V> e) { // unlink
//将p赋值为e
//b赋值为p的前驱结点
//a赋值为p的后继节点
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//将p的前驱结点和后继节点置空
p.before = p.after = null;
//如果b为空,说明p是头结点,将头结点设置为a
if (b == null)
head = a;
//p不是头结点
else
//将b的后继节点设置为a
b.after = a;
//如果a为空,说明p是尾节点,将尾节点设置为b
if (a == null)
tail = b;
//p不是尾节点
else
//将a的前驱结点设置为b
a.before = b;
}
最后看到LinkedHashMap的LinkedEntrySet的iterator方法
public final Iterator<Map.Entry<K,V>> iterator() {
return new LinkedEntryIterator();
}
//继承了LinkedHashIterator
final class LinkedEntryIterator extends LinkedHashIterator
implements Iterator<Map.Entry<K,V>> {
//next方法调用父类的nextNode方法
public final Map.Entry<K,V> next() { return nextNode(); }
}
abstract class LinkedHashIterator {
LinkedHashMap.Entry<K,V> next;
LinkedHashMap.Entry<K,V> current;
int expectedModCount;
LinkedHashIterator() {
//next赋值为头节点
next = head;
//expectedModCount赋值为modCount
expectedModCount = modCount;
current = null;
}
public final boolean hasNext() {
return next != null;
}
//这里不是遍历table去取到数据返回, 而是遍历双向链表返回数据
final LinkedHashMap.Entry<K,V> nextNode() {
//e赋值为next
LinkedHashMap.Entry<K,V> e = next;
//modCount != expectedModCount 抛异常
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
//current 赋值为 e
current = e;
//修改next为下一个节点
next = e.after;
return e;
}
//移除current节点
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
//移除该节点 , modCount加一了
removeNode(hash(key), key, null, false, false);
//这里会重新修改expectedModCount的值为modCount
expectedModCount = modCount;
}
}
到此LinkedHashMap主要的方法就分析完了。