北京交通大学计算机系英语,计算机与信息技术学院

冯松鹤 Songhe Feng

职 称: 教授

学 位:博士

邮 箱:shfeng@bjtu.edu.cn

办公电话:

1d9f8e750f32c1f92dd5e45898676356.png

个人履历

教育经历:

2003.09 - 2009.01 北京交通大学, 计算机与信息技术学院, 计算机应用技术专业, 博士, 导师:须德 教授

1999.09 - 2003.06 北京交通大学, 计算机与信息技术学院, 计算机科学与技术专业, 学士

工作经历:

2017.12 - 至今          北京交通大学,计算机与信息技术学院,教授

2017.09 - 2017.12   德国德累斯顿工业大学,计算机科学系,国家公派访问学者

2013.10 - 2014.10   美国密歇根州立大学,计算机科学与工程系,国家公派访问学者,合作导师:Prof. Rong Jin

2012.12 - 2017.11   北京交通大学,计算机与信息技术学院,副教授

2011.01 - 2012.11   北京交通大学,计算机与信息技术学院,讲师

2009.04 - 2010.12   北京交通大学,计算机与信息技术学院,师资博士后

研究方向

理论层面:聚焦于弱监督机器学习算法研究,包括多标记学习(Multi-Label Learning)、偏标记学习(Partial-Label Learning)、多示例学习(Multi-Instance Learning)、多视角学习(Multi-View Learning)等;

应用层面:聚焦于图像语义理解算法研究,包括弱监督学习框架下的大规模网络图像分类(Weakly Supervised Large-Scale Image Classification)、图像显著性检测(Image Salient Object Detection)等;

发表论文和著作

代表性论文:

(* indicates the first author is my graduate student)

Latest News:

Gengyu Lyu*, Songhe Feng. GM-PLL: Graph Matching based Partial Label Learning.  IEEE Trans. on Knowledge and Data Engineering.(Accepted, CCF A类)

Gengyu Lyu*,Songhe Feng.Partial Label Learning via Low Rank Representation and Label Propagation. Soft Computing. (Accepted)

Honglin Quan*, Songhe Feng. Improving Person Re-identification via Attribute-identity Representation and Visual Attention Mechanism. Multimedia Tools and Applications. (Accepted)

Tao Wang, Haibin Ling, Congyan Lang, Songhe Feng, Xiaohui Hou. Deformable Surface Tracking by Graph Matching​. ICCV, 2019. (Accepted, CCF A类​)

Gengyu Lyu*,Songhe Feng. A Self-paced Regularization Framework for Partial-Label Learning. IEEE Trans. on Cybernetics. (Major Revision)

代表性论文:

Songhe Feng, Zheyun Feng, Rong Jin. Learning to Rank Image Tags with Limited Training Examples.  IEEE Trans. on Image Processing, 24(4), pp. 1223-1234, 2015. (SCI, CCF A类)

Songhe Feng, Congyan Lang, Jiashi Feng, Jiebo Luo. Human Facial Age Estimation by Cost Sensitive Label Ranking and Trace Norm Regularization. IEEE Trans. on Multimedia, 19(1), pp. 136-148, 2017. (SCI, CCF B类)

Gengyu Lyu*, Songhe Feng. GM-PLL: Graph Matching based Partial Label Learning.  IEEE Trans. on Knowledge and Data Engineering.(SCI, CCF A类)

Songhe Feng, Congyan Lang, Bing Li. Towards Relevance and Saliency Ranking of Image Tags. ACM Multimedia, pp.917-920, 2012. (CCF A类)

Lijuan Sun*, Songhe Feng, Tao Wang, Congyan Lang, Yi Jin. Partial Multi-Label Learning by Low-Rank and Sparse Decomposition. AAAI, 2019. (CCF A类)

Bing Li, Songhe Feng.Scaring or pleasing: exploit emotional impact of an image. ACM Multimedia, pp.1365-1366, 2012. (CCF A类)

Zheyun Feng, Songhe Feng, Rong Jin. Image Tag Completion by Noisy Matrix Recovery. ECCV, pp. 424-438, 2014.(CCF B类)

Tao Wang, Haibin Ling, Congyan Lang, Songhe Feng. Graph Matching with Adaptive and Branching Path Following.  IEEE Trans. on Pattern Analysis and Machine Intelligence, 40(12), pp. 2853-2867, 2018. (SCI, CCF A类)

Congyan Lang, Jiashi Feng, Songhe Feng, Jingdong Wang, Shuicheng Yan. Dual Low-Rank Pursuit: Learning Salient Features for Saliency Detection. IEEE Trans. On Neural Networks and Learning Systems, 27(6), pp. 1190-1200, 2016.(SCI, CCF B类)

Zhu Teng, Junliang Xing, Qiang Wang, Congyan Lang, Songhe Feng, Yi Jin. Robust Object Tracking  based on Temporal and Spatial Deep Network. ICCV, pp. 1153-1162, 2017. (CCF A类)

Chenjing Yan, Congyan Lang, Songhe Feng. Facial Age Estimation Based on Structured Low-rank Representation.ACM Multimedia, pp. 1207-1210, 2015. (CCF A类)

弱监督多标记学习等相关领域:

Gengyu Lyu*, Songhe Feng. GM-PLL: Graph Matching based Partial Label Learning.  IEEE Trans. on Knowledge and Data Engineering.(Accepted, CCF A类)

Lijuan Sun*, Songhe Feng, Tao Wang, Congyan Lang, Yi Jin. Partial Multi-Label Learning by Low-Rank and Sparse Decomposition. AAAI, 2019. (CCF A类)

Gengyu Lyu*,Songhe Feng.Partial Label Learning via Low Rank Representation and Label Propagation. Soft Computing. (Accepted, CCF C类)

Lijuan Sun*, Songhe Feng, Gengyu Lyu, Congyan Lang. Robust Semi-Supervised Multi-Label Learning by Triple Low-Rank Regularization. PAKDD, 2019. (CCF C类)

Gengyu Lyu*,Songhe Feng. A Self-paced Regularization Framework for Partial-Label Learning. IEEE Trans. on Cybernetics. (Major Revision)

Gengyu Lyu*, Songhe Feng.HERA: Partial Label Learning by Combining Heterogeneous Loss with Sparse and Low-rank Regularization. ACM Trans. on Intelligent Systems and Technology.(Under Review)

Xiaoying Wang*, Songhe Feng, Congyan Lang. Semi-supervised dual low-rank feature mapping for multi-label image annotation. Multimedia Tools and Applications, 78(5), pp. 13149-13168, 2019. (SCI, CCF C类)

Wenying Huang*,Songhe Feng. Partial Label Learning via Low-rank Representation and Label Propagation. ICIMCS, 2018.

Songhe Feng, Congyan Lang. Graph Regularized Low-rank Feature Mapping for Multi-label Learning with Application to Image Annotation. Multidimensional Systems and Signal Processing, 29(1), pp. 1351-1372, 2019. (SCI)

图像标注等相关领域:

Songhe Feng, Zheyun Feng, Rong Jin. Learning to Rank Image Tags with Limited Training Examples.  IEEE Trans. on Image Processing, 24(4), pp. 1223-1234, 2015. (SCI, CCF A类)

Songhe Feng, Congyan Lang, Jiashi Feng, Jiebo Luo. Human Facial Age Estimation by Cost Sensitive Label Ranking and Trace Norm Regularization. IEEE Trans. on Multimedia, 19(1), pp. 136-148, 2017. (SCI, CCF B类)

Yanan Dong, Congyan Lang, Songhe Feng. General Structured sparse learning for human facial age estimation. Multimedia Systems, 25(1), pp. 49-57, 2019. (SCI, CCF C类)

Mengxia Yin, Congyan Lang, Zun Li, Songhe Feng, Tao Wang. Recurrent Convolutional Network for Video-based Smoke Detection. Multimedia Tools and Applications, 78(1), pp. 237-256, 2019. (SCI, CCF C类)

Songhe Feng, Weihua Xiong. Hierarchical sparse representation based multi-instance semi-supervised learning with application to image categorization. Signal Processing, 94(1), pp.595-607, 2014. (SCI, CCF C类)

Songhe Feng, De Xu. Transductive Multi-Instance Multi-Label Learning Algorithm with Application to Automatic Image Annotation. Expert Systems with Applications,37(1), pp. 661-670, Jan.2010. (SCI, CCF C类)

Congyan Lang, Songhe Feng. Supervised sparse patch coding towards misalignment-robust face recognition. Journal of Visual Communication and Image Representation, 24(2): 103-110, 2013. (SCI, CCF C类)

Chenjing Yan, Congyan Lang, Songhe Feng. Facial Age Estimation Based on Structured Low-rank Representation.ACM Multimedia, pp. 1207-1210, 2015. (CCF A类)

Zhu Teng, Junliang Xing, Qiang Wang, Congyan Lang, Songhe Feng. Robust Object Tracking based on Temporal and Spatial Deep Networks. ICCV, pp.1153-1162, 2017. (CCF A类)

社群图像语义标签过滤等相关领域:

Songhe Feng, Congyan Lang, Bing Li. Towards Relevance and Saliency Ranking of Image Tags. ACM Multimedia, pp.917-920, 2012. (CCF A类)

Zheyun Feng, Songhe Feng, Rong Jin. Image Tag Completion by Noisy Matrix Recovery. ECCV, pp. 424-438, 2014.(CCF B类)

Songhe Feng, Congyan Lang, De Xu. Beyond Tag Relevance: Integrating Visual Attention Model and Multi-Instance Learning for Tag Saliency Ranking. In: Proc of. ACM International Conference on Image and Video Retrieval (ACM CIVR2010), pp.288-295, 2010. (CCF B类)

Songhe Feng, Congyan Lang, Hongzhe Liu, Xiankai Huang. Adaptive All-Season Image Tag Ranking by Saliency-Driven Image Pre-Classification. Journal of Visual Communication and Image Representation, 24(7),  pp.1031-1039. 2013. (SCI, CCF C类)

Songhe Feng, Hong Bao. Combining visual attention model with multi-instance learning for tag ranking. Neurocomputing, 74(2011). 3619-3627. (SCI, CCF C类)

Bing Li, Songhe Feng.Scaring or pleasing: exploit emotional impact of an image. ACM Multimedia,pp.1365-1366, 2012. (CCF A类 )

图像显著性检测等相关领域:

Zun Li, Congyan Lang, Jiashi Feng, Yidong Li, Tao Wang, Songhe Feng. Co-Saliency Detection with Graph Matching. ACM Trans. on Intelligent System and Technology,2019.(SCI, CCF B类)

Congyan Lang, Jiashi Feng, Songhe Feng, Jingdong Wang, Shuicheng Yan. Dual Low-Rank Pursuit: Learning Salient Features for Saliency Detection. IEEE Trans. On Neural Networks and Learning Systems, 27(6), 1190-1200, 2016.(SCI, CCF B类)

Honglin Quan*, Songhe Feng. Improving Person Re-identification via Attribute-identity Representation and Visual Attention Mechanism. Multimedia Tools and Applications. (Accepted, CCF C类)

Zun Li, Congyan Lang, Songhe Feng, Tao Wang. Saliency Ranker: A New Salient Object Detection Method. Journal of Visual Communication and Image Representation, 50(1), pp. 16-26, 2018. (SCI, CCF C类)

Honglin Quan*, Songhe Feng, Baifan Chen. Two Birds with One Stone: A Unified Approach to Saliency and Co-Saliency Detection via Multi-Instance Learning.IEEE Access, 2017. (SCI )

Songhe Feng, De Xu. Attention-driven Salient Edge(s) and Region(s) Extraction with Application to CBIR. Signal Processing, 90(1), pp.1-15, Jan.2010. (SCI, CCF C类)

图匹配算法等相关领域:

Tao Wang, Haibin Ling, Congyan Lang, Songhe Feng. Graph Matching with Adaptive and Branching Path Following.  IEEE Trans. on Pattern Analysis and Machine Intelligence, 40(12), pp. 2853-2867, 2018. (SCI, CCF A类)

Tao Wang, Haibin Ling, Congyan Lang,Songhe Feng. Symmetry-Aware Graph Matching. Pattern Recognition, 60, pp. 657-668, 2016. (CCF B类)

Jun Zhou, Tao Wang, Congyan Lang, Songhe Feng. A Novel Hypergraph Matching Algorithm based on Tensor Refining.Journal of Visual Communication and Image Representation, 57, pp. 69-75, 2018. (SCI, CCF C类)

Tao Wang, Hua Yang, Congyan Lang, Songhe Feng. An error-tolerant approximate matching algorithm for labeled combinatorial maps. Neurocomputing, 156(25). 211-220, 2015. (SCI, CCF C类)

Tao Wang, Haibin Ling, Congyan Lang, Songhe Feng. Constrained Confidence Matching for Planar Object Tracking. ICRA, 2018. (CCF B类)

代表性著作:

科研项目及获奖情况

科研项目:

主持 国家自然科学基金项目 / 北京市自然科学基金项目 / 教育部博士点基金项目 / 中国博士后科学基金面上项目 / 中国博士后科学基金特别资助项目 / 中央高校基本科研业务费项目 / 北京市重点实验室开放课题项目等20余项。部分代表性科研项目列表如下:

国家自然科学基金面上项目:弱监督学习框架下大规模图像语义理解关键技术研究,2019-2022,主持

国家自然科学基金面上项目:海量社群图像语义理解关键技术研究,2015-2018, 主持

国家自然科学基金青年项目:基于视觉认知理论的图像层次化语义理解研究,2012-2014,主持

北京自然科学基金面上项目:基于上下文的图像语义理解关键技术研究,2016-2018,主持

国家自然科学基金面上项目:基于视觉感知的中国书画图像语义自动分类研究,2010-2012,合作单位主持

获奖情况:

2015年入选北京交通大学青年英才计划II类;

2011年北京交通大学握奇奖教金;

2010年计算机与信息技术学院教学基本功比赛一等奖;

授课及指导研究生

本人拟于2020年度招收1名博士研究生(直博/硕博连读/申请考核均可),3-5名学术型硕士研究生(有读博意愿的优先考虑),需要有较好的数学基础及英文读写能力。研究方向包括但不限于:弱监督机器学习算法及其在多媒体内容分析中的应用。感兴趣的同学请与我邮件联系!

在读博士研究生:

孙利娟(2017-)      吕庚育(2018-)      吴亚楠 (2019-)

在读硕士研究生:

叶   苹(学硕, 2017-)     李施施 (专硕, 2017-)

李子薇 (学硕, 2018-)     孙   悦 (学硕, 2018-)     刘   燕 (专硕, 2018-)     李艳青 (专硕, 2018-)     季玲玲 (专硕, 2018-)

刘馨媛 (学硕, 2019-)     周   彤 (学硕, 2019-)     陆   迅 (学硕, 2019-)     赵建国 (学硕, 2019-)     王绍凯 (学硕, 2019-)

已毕业硕士研究生:

谢延涛 (专硕 2014), 国家电网

罗骁原 (学硕 2016), 中航信

邢妍妍 (专硕 2016), 光明日报

翟昱昊 (专硕 2016), 京东方集团

李敬伟 (学硕 2017), 航天三院

孙   健 (专硕 2017), 德勤集团

王晓莹 (学硕 2018), 中国建设银行,校级优秀硕士论文获得者

权洪林 (学硕 2019),度小满金融,院级优秀硕士论文获得者

黄文英 (学硕 2019),中国银行

黄维雪 (专硕 2019), 中软国际

承担本科生课程:

C语言程序设计;

JAVA语言程序设计;

多媒体应用基础;

承担研究生课程:

Introduction to Machine Vision (For International Graduate Students)

视觉认知计算与图像语义计算(博士生课程);

机器视觉基础(硕士生课程);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值