06NumPy学习——广播机制

本文详细介绍了NumPy的广播机制,解释了不同形状的数组如何进行数值计算。通过实例演示了当两个数组形状不同时,NumPy如何自动触发广播机制进行运算,并提供了广播规则的详细说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。

如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。

import numpy as np 
 
a = np.array([1, 2, 3, 4]) 
b = np.array([10, 20, 30, 40]) 
c = a * b 
print(c)

输出结果:
[ 10 40 90 160]

当运算中的 2 个数组的形状不同时,numpy 将自动触发广播机制。如:

import numpy as np 
 
a = np.array([[0, 0, 0],
              [10, 10, 10],
              [20, 20, 20],
              [30, 30, 30]])
b = np.array([1, 2, 3])
print(a + b)

输出结果:
[ [ 1 2 3]
  [11 12 13]
  [21 22 23]
  [31 32 33] ]

下面的图片展示了数组 b 如何通过广播来与数组 a 兼容。
在这里插入图片描述
4x3 的二维数组与长为 3 的一维数组相加,等效于把数组 b 在二维上重复 4 次再运算:

import numpy as np 
 
a = np.array([[0, 0, 0],
              [10, 10, 10],
              [20, 20, 20],
              [30, 30, 30]])
b = np.array([1, 2, 3])
bb = np.tile(b, (4, 1))
print(a + bb)

输出结果:
[ [ 1 2 3]
  [11 12 13]
  [21 22 23]
  [31 32 33] ]

广播的规则:

  • 让所有输入数组都向其中形状最长的数组看齐,形状中不足的部分都通过在前面加 1 补齐。
  • 输出数组的形状是输入数组形状的各个维度上的最大值。
  • 如果输入数组的某个维度和输出数组的对应维度的长度相同或者其长度为 1 时,这个数组能够用来计算,否则出错。
  • 当输入数组的某个维度的长度为 1 时,沿着此维度运算时都用此维度上的第一组值。

简单理解:对两个数组,分别比较他们的每一个维度(若其中一个数组没有当前维度则忽略),满足:

  • 数组拥有相同形状。
  • 当前维度的值相等。
  • 当前维度的值有一个是 1。

若条件不满足,抛出 “ValueError: frames are not aligned” 异常。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值