OpenCV3计算机视觉Python语言实现笔记(五)

图像的几何变换主要包括:平移、扩大与缩小、旋转、仿射、透视等等。图像变换是建立在矩阵运算基础上的,通过矩阵运算可以很快的找到对应关系。

1. 图像的平移

  图像的平移,沿着x方向tx距离,y方向ty距离,需要构造移动矩阵M。通过numpy来产生这个矩阵,并将其赋值给仿射函数cv2.warpAffine(). 
仿射函数cv2.warpAffine()接受三个参数,需要变换的原始图像,移动矩阵M 以及变换的图像大小(这个大小如果不和原始图像大小相同,那么函数会自动通过插值来调整像素间的关系)。

复制代码

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
H = np.float32([[1,0,100],[0,1,50]])
rows,cols = img.shape[:2]
res = cv2.warpAffine(img,H,(rows,cols)) #需要图像、变换矩阵、变换后的大小
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()

复制代码

2. 图像的缩放

  图像的缩放有专门的一个函数,cv2.resize(),需要确定的是缩放比例。另外一个就是在缩放以后图像必然就会变化,这就又涉及到一个插值问题。那么这个函数中,缩放有几种不同的插值(interpolation)方法,在缩小时推荐cv2.INTER_ARER,扩大是推荐cv2.INTER_CUBIC和cv2.INTER_LINEAR。默认都是cv2.INTER_LINEAR

复制代码

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
# 插值:interpolation
# None本应该是放图像大小的位置的,后面设置了缩放比例,所有就不要了
res1 = cv2.resize(img,None,fx=2,fy=2,interpolation=cv2.INTER_CUBIC)
#直接规定缩放大小,这个时候就不需要缩放因子
height,width = img.shape[:2]
res2 = cv2.resize(img,(2*width,2*height),interpolation=cv2.INTER_CUBIC)
plt.subplot(131)
plt.imshow(img)
plt.subplot(132)
plt.imshow(res1)
plt.subplot(133)
plt.imshow(res2)
plt.show()

复制代码

3. 图像的旋转

  图像旋转需构造旋转矩阵。opencv提供了一个函数: cv2.getRotationMatrix2D(),这个函数需要三个参数,旋转中心,旋转角度,旋转后图像的缩放比例。

复制代码

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
#第一个参数旋转中心,第二个参数旋转角度,第三个参数:缩放比例
M = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
#第三个参数:变换后的图像大小
res = cv2.warpAffine(img,M,(rows,cols))

plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()

复制代码

4. 图像的仿射

  图像的旋转加上拉升就是图像仿射变换,仿射变化也需要一个变换矩阵M,opencv提供了根据变换前后三个点的对应关系来自动求解M。这个函数是 
M=cv2.getAffineTransform(pos1,pos2),其中两个位置就是变换前后的对应位置关系,输出的就是仿射矩阵M,然后再使用函数cv2.warpAffine()。

复制代码

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])
M = cv2.getAffineTransform(pts1,pts2)
#第三个参数:变换后的图像大小
res = cv2.warpAffine(img,M,(rows,cols))
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()

复制代码

5. 图像的透射

  透视需要的是一个3*3的矩阵,opencv的函数是M = cv2.getPerspectiveTransform(pts1,pts2),其中pts需要变换前后的4个点对应位置。得到M后再通过函数cv2.warpPerspective(img,M,(200,200))进行。

复制代码

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
pts1 = np.float32([[56,65],[238,52],[28,237],[239,240]])
pts2 = np.float32([[0,0],[200,0],[0,200],[200,200]])
M = cv2.getPerspectiveTransform(pts1,pts2)
res = cv2.warpPerspective(img,M,(200,200))
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()

复制代码

OpenCV 3计算机视觉 Python语言实现(第二版)(含示例代码) 编辑推荐 OpenCV 3是一种*先进的计算机视觉库,它提供了很多图像和视频处理操作,以及一些代表计算机视觉未来发展方向的功能,如人脸识别或目标跟踪。学习计算机视觉算法、模型和OpenCV API的基本概念之后,可以开发各种现实生活中的应用程序(如安全和监控方面的应用程序)。 本书从图像处理的基本操作出发,带你开启先进计算机视觉的探索之旅。计算机视觉是一个快速发展的学科,与其相关的现实应用也呈爆炸性增长,本书的目的就是帮助计算机视觉领域的新手和想要了解全新的OpenCV 3.0.0的计算机视觉专家快速掌握基于PythonOpenCV计算机视觉开发的实用方法、技巧和*佳实践。 通过阅读本书,你将学到:   安装和熟练使用基于PythonOpenCV 3的API   掌握图像处理和视频分析的基础知识   在图像和视频中检测和识别目标   使用OpenCV检测和识别人脸   训练和使用自己的对象分类器   了解计算机视觉中的机器学习概念   使用OpenCV的人工神经网络来解决实际问题   开发现实生活中的计算机视觉应用 内容简介 OpenCV是开源、跨平台的计算机视觉库,由英特 尔公司发起并参与开发,在商业和研究领域中可以免费使用。本书介绍了如何通过Python来开发基于OpenCV 3.0的应用。作为当前非常流行的动态语言之一,Python不仅使用非常简单,而且功能强大。通过Python来学习OpenCV框架,可以让你很快理解计算机视觉的基本概念以及重要算法。 本书分8章来介绍计算机视觉的重要概念,所有的概念都融入了一些很有趣的项目。本书首先详细介绍了多个平台下基于PythonOpenCV安装,继而介绍了计算机视觉应用的基本操作,包括图像文件的读取与显示,图像处理的基本操作(比如边缘检测等),深度估计与分割,人脸检测与识别,图像的检索,目标的检测与识别,目标跟踪,神经网络的手写体识别。可以这样说,本书是一本不可多得的采用OpenCV实践计算机视觉应用的好书。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值