简单步骤描述:
1. 首先搜集数据(数据可以是文件系统,数据库,网络上,手工输入的,或者像本例直接写在内存上的)
2. 通过数据创建索引
3. 用户输入关键字
4. 通过关键字创建查询器
5. 根据查询器到索引里获取数据
6. 然后把查询结果展示在用户面前
思路图:
大致代码:
package com.how2java;
import java.io.IOException;
import java.io.StringReader;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import com.sun.applet2.AppletParameters;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.IndexableField;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.highlight.Highlighter;
import org.apache.lucene.search.highlight.QueryScorer;
import org.apache.lucene.search.highlight.SimpleHTMLFormatter;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.RAMDirectory;
import org.wltea.analyzer.lucene.IKAnalyzer;
public class TestLucene {
public static void main(String[] args) throws Exception {
// 1. 准备中文分词器
IKAnalyzer analyzer = new IKAnalyzer();
// 2. 索引
Map<Integer,String> map = new HashMap<>();
map.put(3,"飞利浦led灯泡e27螺口暖白球泡灯家用照明超亮节能灯泡转色温灯泡");
map.put(4,"飞利浦led灯泡e14螺口蜡烛灯泡3W尖泡拉尾节能灯泡暖黄光源Lamp");
map.put(7,"雷士照明 LED灯泡 e27大螺口节能灯3W球泡灯 Lamp led节能灯泡");
map.put(5,"飞利浦 led灯泡 e27螺口家用3w暖白球泡灯节能灯5W灯泡LED单灯7w");
map.put(11,"飞利浦led小球泡e14螺口4.5w透明款led节能灯泡照明光源lamp单灯");
map.put(13,"飞利浦蒲公英护眼台灯工作学习阅读节能灯具30508带光源");
map.put(12,"欧普照明led灯泡蜡烛节能灯泡e14螺口球泡灯超亮照明单灯光源");
map.put(15,"欧普照明led灯泡节能灯泡超亮光源e14e27螺旋螺口小球泡暖黄家用");
map.put(32,"聚欧普照明led灯泡节能灯泡e27螺口球泡家用led照明单灯超亮光源");
Directory index1 = createIndex1(analyzer,map);
// 3. 查询器
String keyword = "照明带光源";
Query query = new QueryParser("name", analyzer).parse(keyword);
// 4. 搜索
IndexReader reader = DirectoryReader.open(index1);
IndexSearcher searcher = new IndexSearcher(reader);
int numberPerPage = 1000;
System.out.printf("当前一共有%d条数据%n",map.size());
System.out.printf("查询关键字是:\"%s\"%n",keyword);
ScoreDoc[] hits = searcher.search(query, numberPerPage).scoreDocs;
// 5. 显示查询结果
showSearchResults(searcher, hits, query, analyzer);
// 6. 关闭查询
reader.close();
}
private static void showSearchResults(IndexSearcher searcher, ScoreDoc[] hits, Query query, IKAnalyzer analyzer)
throws Exception {
System.out.println("找到 " + hits.length + " 个命中.");
System.out.println("序号\t匹配度得分\t结果");
// 以下两行为高亮显示(大体就是替换的方式)
SimpleHTMLFormatter simpleHTMLFormatter = new SimpleHTMLFormatter("","");
Highlighter highlighter = new Highlighter(simpleHTMLFormatter,new QueryScorer(query));
for (int i = 0; i < hits.length; ++i) {
ScoreDoc scoreDoc= hits[i];
int docId = scoreDoc.doc;
Document d = searcher.doc(docId);
List fields = d.getFields();
System.out.print((i + 1));
System.out.print("\t" + scoreDoc.score);
for (IndexableField f : fields) {
// 高亮内容
if (f.name().equals("name")){
TokenStream tokenStream = analyzer.tokenStream(f.name(),new StringReader(d.get(f.name())));
String fieldContent = highlighter.getBestFragment(tokenStream,d.get(f.name()));
// 这里相当于使用了 fieldContent 替换了 d.get(f.name())
System.out.print("\t" + fieldContent);
}else {
System.out.print("\t" + d.get(f.name()));
}
}
System.out.println();
}
}
private static Directory createIndex1(IKAnalyzer analyzer, Map<Integer,String> products) throws IOException {
Directory index = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(analyzer);
IndexWriter writer = new IndexWriter(index, config);
products.forEach((integer, s) -> {
try {
// 添加内容
addDoc1(writer,s,integer);
} catch (IOException e) {
e.printStackTrace();
}
});
writer.close();
return index;
}
private static void addDoc1(IndexWriter w, String name,Integer id) throws IOException {
Document doc = new Document();
doc.add(new TextField("name", name, Field.Store.YES));
// 需要添加多行时,可以使用doc.add 每一个doc可以理解为一条记录
doc.add(new TextField("id", String.valueOf(id), Field.Store.YES));
w.addDocument(doc);
}
}
分页查询时可以使用:
private static ScoreDoc[] pageSearch2(Query query, IndexSearcher searcher, int pageNow, int pageSize) throws IOException {
int start = (pageNow - 1) * pageSize;
if(0==start){
TopDocs topDocs = searcher.search(query, pageNow*pageSize);
return topDocs.scoreDocs;
}
// 查询数据, 结束页面自前的数据都会查询到,但是只取本页的数据
TopDocs topDocs = searcher.search(query, start);
//获取到上一页最后一条
ScoreDoc preScore= topDocs.scoreDocs[start-1];
//查询最后一条后的数据的一页数据
topDocs = searcher.searchAfter(preScore, query, pageSize);
return topDocs.scoreDocs;
}
在实际的操作过程中一定会存在数据一致性的问题,所以需要对索引进行删除与更新操作
删除id为51173的数据:
IndexWriterConfig config = new IndexWriterConfig(analyzer);
IndexWriter indexWriter = new IndexWriter(index, config);
indexWriter.deleteDocuments(new Term("id", "51173"));
indexWriter.commit();
indexWriter.close();
利用条件删除数据:
DeleteDocuments(Query query):根据Query条件来删除单个或多个Document
DeleteDocuments(Query[] queries):根据Query条件来删除单个或多个Document
DeleteDocuments(Term term):根据Term来删除单个或多个Document
DeleteDocuments(Term[] terms):根据Term来删除单个或多个Document
DeleteAll():删除所有的Document
更新数据:
// 更新索引
IndexWriterConfig config = new IndexWriterConfig(analyzer);
IndexWriter indexWriter = new IndexWriter(index, config);
Document doc = new Document();
doc.add(new TextField("id", "51173", Field.Store.YES));
doc.add(new TextField("name", "神鞭,鞭没了,神还在", Field.Store.YES));
doc.add(new TextField("category", "道具", Field.Store.YES));
doc.add(new TextField("price", "998", Field.Store.YES));
doc.add(new TextField("place", "南海群岛", Field.Store.YES));
doc.add(new TextField("code", "888888", Field.Store.YES));
indexWriter.updateDocument(new Term("id", "51173"), doc );
indexWriter.commit();
indexWriter.close();
参考资料:how2j搜索引擎技术