Control of a Quadrotor with Reinforcement Learning

Goal

Control a quadrotor with a neural network trained using reinforcement learning.
Policy network is a function directly mapping a state to rotor thrusts.

Related Work

Guided Policy Search with a MPC Controller
This work uses a policy that maps the raw sensor data to the rotor velocities.

Contribution

Propose a deterministic on-policy method using zero-bias, zero variance samples.
Use small number of high quality samples, so there is only a small burden in neural network.

Network Structure
input: {orientation(rotation matrix), position, angular velocity, linear velocity} --> 18-dimensional state vector
output: 4-dimensional action vector

Exploration Strategy
TRPO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值