A graph which is connected and acyclic can be considered a tree. The hight of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤104) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N−1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K components
where K
is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
#include<iostream>
#include<cmath>
#include<string.h>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<string>
using namespace std;
typedef long long ll;
map<int ,vector<int> >mymap;
vector<int> v;
set<int> s;
int mm;
int vis[100002];
void dfs(int x,int step)
{
vis[x] = 1;
if(step>mm){
mm=step;
v.clear();
v.push_back(x);
}
else if(step==mm){
v.push_back(x);
}
for(int i = 0 ; i<mymap[x].size();i++)
{
if(!vis[mymap[x][i]]){
dfs(mymap[x][i],step+1);
}
}
}
int main(){
int N;
cin>>N;
for(int i = 1; i <=N-1;i++)
{
int a,b;
cin>>a>>b;
mymap[a].push_back(b);
mymap[b].push_back(a);
}
int temp = 0;
int k = 0;
for(int i = 1; i<=N;i++)
{
if(!vis[i]){
dfs(i,0);
if(i==1){
for(int j = 0;j<v.size();j++)
{
if(j==0)temp = v[j];
s.insert(v[j]);
}
}
k++;//计算连通分量
}
}
if(k==1){
memset(vis,0,sizeof(vis));
v.clear();
dfs(temp,0);
for(int i = 0;i<v.size();i++)
{
s.insert(v[i]);
}
set<int>::iterator it;
for(it = s.begin();it!=s.end();it++)
{
printf("%d\n",*it);
}
}
else printf("Error: %d components\n",k );
return 0;
}