很很很久没刷leetcode,又开始了要找不到工作的焦虑感,从今天开始,重拾刷题更博客的生活!
二叉树的遍历老生常谈,面试也经常出现,从方法上讲分为递归方法和非递归方法,从类型上讲分为前序中序和后序,还有层序等等。
1. 二叉树的前序遍历(Leetcode 144)
a. 递归方法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root != null){
list.add(root.val);
list.addAll(preorderTraversal(root.left));
list.addAll(preorderTraversal(root.right));
}
return list;
}
}
这里,想说一下,List中add和addAll的区别:
add是将传入的参数作为当前List中的一个Item存储,即使你传入一个List也只会另当前的List增加1个元素;addAll是传入一个List,将此List中的所有元素加入到当前List中,也就是当前List会增加的元素个数为传入的List的大小。即addAll(Collection c),add(int index,Elelemt e)。说白了,就是add后面的参数是一个元素,addAll后面的参数是一个list。
b. 非递归方法
思路:通过栈来实现存储节点,先在栈中存储右子树的节点,再存储并弹出左子树的节点
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root != null){
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode a = stack.pop();
list.add(a.val);
if(a.right != null){
stack.push(a.right);
}
if(a.left != null){
stack.push(a.left);
}
}
}
return list;
}
}
2. 二叉树的中序遍历(Leetcode 94)
a. 递归方法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root != null){
list.addAll(inorderTraversal(root.left));
list.add(root.val);
list.addAll(inorderTraversal(root.right));
}
return list;
}
}
b. 非递归方法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
while(root != null || !stack.isEmpty()){
while(root != null){
stack.push(root);
root = root.left;
}
TreeNode node = stack.pop();
list.add(node.val);
root = node.right;
}
return list;
}
}
3. 二叉树的后序遍历(Leetcode 145)
a. 递归方法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root != null){
list.addAll(postorderTraversal(root.left));
list.addAll(postorderTraversal(root.right));
list.add(root.val);
}
return list;
}
}
b. 非递归方法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Stack<TreeNode> nodeStack = new Stack<>();
Stack<Integer> nodeState = new Stack<>();
//记录右节点是否已经访问过,1表示已经访问了,0表示未访问
if(root==null)
return res;
else {
nodeStack.push(root);
nodeState.push(0);
root=root.left;
}
while(!nodeStack.isEmpty()){
while(root!=null)
{
nodeStack.push(root);
nodeState.push(0);
root=root.left;
}//当这个循环跳出的时候, 说明nodeStak栈顶的那个节点没有左节点
if(nodeState.peek()==1){
//如果这时候已经访问过右节点了, 这时候就可以访问根节点
res.add(nodeStack.pop().val);
nodeState.pop();//把根节点对应的状态值去除
}
else {//访问右节点
root=nodeStack.peek().right;
nodeState.pop();//更改状态值由0变1
nodeState.push(1);
}
}
return res;
}
}
4. 二叉树的层序遍历
- 两个队列,一个队列保存当前要遍历的节点,另一个队列用于存储下次遍历用的节点。初始状态当前队列只有一个元素根节点。
- 然后弹出工作队列元素,如果有子节点,推入下次遍历用节点。当当前队列为空,切换2个队列的功能继续。
- 详情见图2.jpg
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> ans = new ArrayList<>();
if(root == null)
return ans;
List<TreeNode> cur = new LinkedList<>();
List<TreeNode> next = new LinkedList<>();
List<TreeNode> tmp = new LinkedList<>();
cur.add(root);
while(!cur.isEmpty()){
List<Integer> list = new LinkedList<>();
while(!cur.isEmpty()){
if(cur.get(0).left != null)
next.add(cur.get(0).left);
if(cur.get(0).right != null)
next.add(cur.get(0).right);
list.add(cur.get(0).val);
cur.remove(0);
}
tmp = cur;
cur = next;
next = tmp;
ans.add(list);
}
return ans;
}
}
5. 翻转二叉树 (Leetcode 226)
a. 递归方法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null)
return root;
TreeNode node = root.left;
root.left = invertTree(root.right);
root.right = invertTree(node);
return root;
}
}
b. 非递归方法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null)
return root;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
TreeNode tmp = node.left;
node.left = node.right;
node.right = tmp;
if(node.left != null){
stack.push(node.left);
}
if(node.right != null){
stack.push(node.right);
}
}
return root;
}
}
6. 锯齿形层次遍历二叉树
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> ans = new ArrayList<>();
if(root == null)
return ans;
Deque<TreeNode> cur = new LinkedList<>();
Deque<TreeNode> next = new LinkedList<>();
Deque<TreeNode> tmp = new LinkedList<>();
cur.add(root);
int i = 1;
while(!cur.isEmpty()){
List<Integer> list = new LinkedList<>();
while(!cur.isEmpty()){
if(i % 2 == 1){
if(cur.getFirst().left != null)
next.add(cur.getFirst().left);
if(cur.getFirst().right != null)
next.add(cur.getFirst().right);
list.add(cur.getFirst().val);
cur.removeFirst();
}
else{
if(cur.getLast().right != null)
next.addFirst(cur.getLast().right); //addFirst相当于在add的相反位置加
if(cur.getLast().left != null)
next.addFirst(cur.getLast().left);
list.add(cur.getLast().val);
cur.removeLast();
}
}
++i;
tmp = cur;
cur = next;
next = tmp;
ans.add(list);
}
return ans;
}
}
7. 中序遍历和后序遍历构造二叉树 (Leetcode 106)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode buildTree(int[] inorder, int[] postorder) {
return buildTree1(inorder, postorder, 0, inorder.length, 0, postorder.length);
}
public TreeNode buildTree1(int[] inorder, int[] postorder, int instart, int inend, int poststart, int postend){
if(instart >= inend)
return null;
int i = instart;
while(i < inend){
if(inorder[i] == postorder[postend - 1]){
break; //找到根节点
}
++i;
}
TreeNode root = new TreeNode(inorder[i]);
int left_len = i - instart; //左子树元素数量
root.left = buildTree1(inorder, postorder, instart, i, poststart, poststart + left_len);
root.right = buildTree1(inorder, postorder, i + 1, inend, poststart + left_len, postend - 1);
return root;
}
}