二叉树的最大深度
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/
9 20
/
15 7
返回它的最大深度 3 。
设计思想:
方法一:深度优先搜索
思路与算法
如果我们知道了左子树和右子树的最大深度 ll 和 rr,那么该二叉树的最大深度即为
max(l,r)+1
而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在 O(1)O(1) 时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。
方法二:广度优先搜索
思路与算法
我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行一些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量 \textit{ans}ans 来维护拓展的次数,该二叉树的最大深度即为 \textit{ans}ans。
C语言:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int maxDepth(struct TreeNode* root){
if (root==NULL)
return 0;
int left=maxDepth(root->left);
int right=maxDepth(root->right);
return 1+fmax(left,right);
}
Java:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
return root==null ? 0 :Math.max(maxDepth(root.left),maxDepth(root.right))+1;
}
}
Python3:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
import collections
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root:
return 0
queue=collections.deque()
queue.append(root)
ans=0
while queue:
ans+=1
for _ in range(len(queue)) :
node =queue.popleft()
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return ans