一、相关下载资料
vgg的mat文件(存储了训练得到的值):http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat
imagenet_classes.py(vgg输出层为全连层1000,做了1k类的分类):http://www.cs.toronto.edu/~frossard/post/vgg16/
进行测试的cat.jpg :
二、特征可视化
加载vgg19网络处理猫的图片,对每个层feature map的一个通道(比如1/64)的数据进行特征可视化
import scipy.io
import numpy as np
import os
import scipy.misc
import matplotlib.pyplot as plt
import tensorflow as tf
#卷积层,wx+b,这里的w就是核函数filter
def _conv_layer(input, weights, bias):
conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1,1,1,1), padding='SAME')
return tf.nn.bias_add(conv, bias)
#最大池化层
def _pool_layer(input):
return tf.nn.max_pool(input, ksize=(1,2,2,1), strides=(1,2,2,1), padding='SAME')
#预处理,减去均值
def preprocess(image, mean_pixel):
return image - mean_pixel
#后处理,加上均值
def unprocess(image, mean_piexl):
return image + mean_piexl
#获取图像
def imread(path):
return scipy.misc.imread(path).astype(np.float)
#裁剪像素值在【0,255】之外的数据,保存图像
def imsave(path, img):
img = np.clip(img, 0, 255).astype(np.int8)
scipy.misc.imsave(path, img)
print('functions for vgg ready')
#输入:vgg数据,输入图像
#注意这里的卷积操作是和非线性操作分开的
def net(data_path, input_image):
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2',
'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4',