数据正规化 (data normalization) 的原理及实现 (Python sklearn)

原理

数据正规化(data normalization)是将数据的每个样本(向量)变换为单位范数的向量,各样本之间是相互独立的.其实际上,是对向量中的每个分量值除以正规化因子.常用的正规化因子有 L1, L2 和 Max.假设,对长度为 n 的向量,其正规化因子 z 的计算公式,如下所示:

注意:Max 与无穷范数  不同,无穷范数 是需要先对向量的所有分量取绝对值,然后取其中的最大值;而 Max 是向量中的最大分量值,不需要取绝对值的操作.

补充:一阶范数也称为曼哈顿距离(Manhanttan distance)或街区距离;二阶范数也称为欧式距离(Euclidean distance).

实现

在 Python 库 sklearn 中,有两种实现方式进行数据的正规化,这两种实现都可通过参数 norm 选择正规化因子,可选项有 'l1', 'l2' 和 'max'.

方法一:采用 sklearn.preprocessing.Normalizer 类,其示例代码如下:

#!/usr/bin/env python
# -*- coding: utf8 -*-
# author: klchang
# Use sklearn.preprocessing.Normalizer class to normalize data.
from __future__ import print_function
import numpy as np
from sklearn.preprocessing import Normalizer


x = np.array([1, 2, 3, 4], dtype='float32').reshape(1,-1)

print("Before normalization: ", x)

options = ['l1', 'l2', 'max']
for opt in options:
    norm_x = Normalizer(norm=opt).fit_transform(x)
    print("After %s normalization: " % opt.capitalize(), norm_x)

方法二:采用 sklearn.preprocessing.normalize 函数,其示例代码如下:

#!/usr/bin/env python
# -*- coding: utf8 -*-
# author: klchang
# Use sklearn.preprocessing.normalize function to normalize data.

from __future__ import print_function
import numpy as np
from sklearn.preprocessing import normalize


x = np.array([1, 2, 3, 4], dtype='float32').reshape(1,-1)

print("Before normalization: ", x)

options = ['l1', 'l2', 'max']
for opt in options:
    norm_x = normalize(x, norm=opt)
    print("After %s normalization: " % opt.capitalize(), norm_x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值