直方图,分桶和密度
a.基础直方图
一个简单的直方图可以是我们开始理解数据集的第一步。前面我们看到了 Matplotlib 的直方图函数,我们可以用一行代码绘制基础的直方图,当然首先需要将需要用的包导入 notebook:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
data = np.random.randn(1000)
plt.hist(data);
hist()函数有很多的参数可以用来调整运算和展示;下面有一个更加个性化的直方图展示:
译者注:normed 参数已经过时,此处对代码进行了相应修改,使用了替代的 density 参数。
plt.hist(data, bins=30, density=True, alpha=0.5,
histtype='stepfilled', color='steelblue',
edgecolor='none');
plt.hist文档中有更多关于个性化参数的信息。作者发现联合使用histtype='stepfilled’和alpha参数设置透明度在对不同分布的数据集进行比较展示时很有用:
x1 = np.random.normal(0, 0.8,