第六章 二叉树part01
理论基础
需要了解 二叉树的种类,存储方式,遍历方式 以及二叉树的定义
递归遍历
# 前序遍历-递归-LC144_二叉树的前序遍历
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def preorderTraversal(self, root: TreeNode) -> List[int]:
res = []
def dfs(node):
if node is None:
return
res.append(node.val)
dfs(node.left)
dfs(node.right)
dfs(root)
return res
# 中序遍历-递归-LC94_二叉树的中序遍历
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
res = []
def dfs(node):
if node is None:
return
dfs(node.left)
res.append(node.val)
dfs(node.right)
dfs(root)
return res
# 后序遍历-递归-LC145_二叉树的后序遍历
class Solution:
def postorderTraversal(self, root: TreeNode) -> List[int]:
res = []
def dfs(node):
if node is None:
return
dfs(node.left)
dfs(node.right)
res.append(node.val)
dfs(root)
return res
迭代遍历 (基础不好的录友,迭代法可以放过, 只是看了一下思路)
统一迭代 (基础不好的录友,迭代法可以放过,只是看了一下思路)
这是统一迭代法的写法, 如果学有余力,可以掌握一下
层序遍历
代码随想录
10道题
102. 二叉树的层序遍历
层序遍历用的是队列 && 记录每一层的节点的个数
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
vector<vector<int>> result;
if (root !=NULL) que.push(root);
while(!que.empty()){
int size = que.size();
vector<int> vec;
for (int i = 0; i< size; i++){
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
return result;
}
};
107. 二叉树的层序遍历 II
这道题比102多了一行代码
reverse(result.begin(), result.end());
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
queue<TreeNode* > que;
vector<vector<int>> result;
if (root != NULL) que.push(root);
while(!que.empty()) {
vector<int> res;
int size= que.size();
for (int i=0; i<size; i++){
TreeNode* node = que.front();
que.pop();
res.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(res);
}
reverse(result.begin(), result.end());
return result;
}
};
199. 二叉树的右视图
层序遍历,记录每层的最后一个节点即可
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
queue<TreeNode*> que;
vector<int> res;
if (root != NULL) que.push(root);
while( !que.empty()){
int size = que.size();
for(int i = 0; i < size; i++){
auto node = que.front();
que.pop();
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
if (i == size -1) res.push_back(node->val);
}
}
return res;
}
};
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
vector<double> res;
queue<TreeNode*> que;
if (root != NULL) que.push(root);
while(!que.empty()){
int size = que.size();
double sum = 0;
for(int i=0; i<size;i++){
auto node = que.front();
que.pop();
sum += node->val;
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
res.push_back(sum/size);
}
return res;
}
};
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> children;
Node() {}
Node(int _val) {
val = _val;
}
Node(int _val, vector<Node*> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public:
vector<vector<int>> levelOrder(Node* root) {
vector<vector<int>> result;
queue<Node*> que;
if (root != NULL) que.push(root);
while(!que.empty()){
int size = que.size();
vector<int> res;
for(int i = 0; i < size; i++){
auto node = que.front();
que.pop();
res.push_back(node->val);
for(int i = 0; i< node->children.size();i++){
if(node->children[i]) que.push(node->children[i]);
}
}
result.push_back(res);
}
return result;
}
};
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
vector<int> res;
queue<TreeNode*> que;
if(root != NULL) que.push(root);
while( !que.empty()){
int size = que.size();
int max = INT_MIN;
for (int i = 0;i < size; i++) {
auto node = que.front();
que.pop();
if (node->val > max) max = node->val;
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
res.push_back(max);
}
return res;
}
};
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if (root != NULL) que.push(root);
while (!que.empty()) {
int size = que.size();
// vector<int> vec;
Node* nodePre;
Node* node;
for (int i = 0; i < size; i++) {
if (i == 0) {
nodePre = que.front(); // 取出一层的头结点
que.pop();
node = nodePre;
} else {
node = que.front();
que.pop();
nodePre->next = node; // 本层前一个节点next指向本节点
nodePre = nodePre->next;
}
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
nodePre->next = NULL; // 本层最后一个节点指向NULL
}
return root;
}
};
117. 填充每个节点的下一个右侧节点指针 II
代码和116题的完全一样
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if (root != NULL) que.push(root);
while (!que.empty()) {
int size = que.size();
Node* nodePre;
Node* node;
for (int i = 0; i < size; i++) {
if (i == 0) {
nodePre = que.front(); // 取出一层的头结点
que.pop();
node = nodePre;
} else {
node = que.front();
que.pop();
nodePre->next = node; // 本层前一个节点next指向本节点
nodePre = nodePre->next;
}
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
nodePre->next = NULL; // 本层最后一个节点指向NULL
}
return root;
}
};
class Solution {
public:
int maxDepth(TreeNode* root) {
if (root == NULL) return 0;
int depth = 0;
queue<TreeNode*> que;
que.push(root);
while(!que.empty()) {
int size = que.size();
depth++; // 记录深度
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
}
return depth;
}
};
104. 二叉树的最大深度
记录层数即可
class Solution {
public:
int maxDepth(TreeNode* root) {
if (root == NULL) return 0;
int num = 0;
queue<TreeNode*> que;
if (root != NULL) que.push(root);
while( !que.empty()) {
int size = que.size();
num += 1;
for (int i = 0; i < size; i++){
auto node = que.front();
que.pop();
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
}
return num;
}
};
111. 二叉树的最小深度
注意终止的条件
class Solution {
public:
int minDepth(TreeNode* root) {
if (root == NULL) return 0;
int depth = 0;
queue<TreeNode*> que;
if (root != NULL) que.push(root);
while( !que.empty()) {
int size = que.size();
depth += 1;
for (int i = 0;i < size; i++) {
auto node = que.front();
que.pop();
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
if (!node->left && !node->right) return depth;
}
}
return depth;
}
};