Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output
One integer per line representing the maximum of the total value (this number will be less than 231).
Sample Input
1
5 10
1 2 3 4 5
5 4 3 2 1
Sample Output
14
裸的01背包,有二维dp,和一维dp两种方法。
状态转移方程: f[i][j] = max( f[i-1][j],f[i-1][ j-w[i] ]+v[i])
//二维dp
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int Max = 1010;
int v[Max],w[Max],f[Max][Max];
int t,x,y,m,n;
int main()
{
scanf("%d",&t);
while(t--)
{
memset(v,0,sizeof(v));
memset(w,0,sizeof(w));
memset(f,0,sizeof(f));
scanf("%d %d",&m,&n);
for(int i=1;i<=m;i++) scanf("%d",&v[i]);
for(int i=1;i<=m;i++) scanf("%d",&w[i]);
for(int i=1;i<=m;i++){
for(int j=0;j<=n;j++){ //注意物品重量可能为0
if(j>=w[i]) f[i][j] = max(f[i-1][j],f[i-1][j-w[i]]+v[i]);
else f[i][j] = f[i-1][j];
}
}
printf("%d\n",f[m][n]);
}
return 0;
}
//一维dp
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int Max = 1010;
int v[Max],w[Max],f[Max];
int t,x,y,m,n;
int main()
{
scanf("%d",&t);
while(t--)
{
memset(v,0,sizeof(v));
memset(w,0,sizeof(w));
memset(f,0,sizeof(f));
scanf("%d %d",&m,&n);
for(int i=1;i<=m;i++) scanf("%d",&v[i]);
for(int i=1;i<=m;i++) scanf("%d",&w[i]);
for(int i=1;i<=m;i++){
for(int j=n;j>=0;j--){
if(j>=w[i]) f[j] = max(f[j],f[j-w[i]]+v[i]);
}
}
printf("%d\n",f[n]);
}
return 0;
}