BlockingQueue中 take、offer、put、add的一些比较

本文详细介绍了Java中BlockingQueue的基本概念及使用方法,包括四种主要操作形式:抛出异常、返回特殊值、阻塞和超时,并通过源码解析了offer、put、take等关键方法的实现原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(转自: https://blog.youkuaiyun.com/wei_ya_wen/article/details/19344939 侵删)

在java多线程操作中, BlockingQueue<E> 常用的一种方法之一。在看jdk内部尤其是一些多线程,大量使用了blockinkQueue 来做的。 

借用jdk api解释下:

BlockingQueue 方法以四种形式出现,对于不能立即满足但可能在将来某一时刻可以满足的操作,这四种形式的处理方式不同:第一种是抛出一个异常,第二种是返回一个特殊值(null 或 false,具体取决于操作),第三种是在操作可以成功前,无限期地阻塞当前线程,第四种是在放弃前只在给定的最大时间限制内阻塞。下表中总结了这些方法:

 抛出异常特殊值阻塞超时
插入add(e)offer(e)put(e)offer(e, time, unit)
移除remove()poll()take()poll(time, unit)
检查element()peek()不可用不可用


offer: 将指定元素插入此队列中(如果立即可行且不会违反容量限制),成功时返回 true,如果当前没有可用的空间,则返回 false,不会抛异常:

java源代码

[html]  view plain  copy
  1. public boolean offer(E e) {  
  2.        if (e == null) throw new NullPointerException();  
  3.        final ReentrantLock lock = this.lock;  
  4.        lock.lock();  
  5.        try {  
  6.            if (count == items.length)  
  7.                return false;  
  8.            else {  
  9.                insert(e);  
  10.                return true;  
  11.            }  
  12.        } finally {  
  13.            lock.unlock();  
  14.        }  
  15.    }  

put:

将指定元素插入此队列中,将等待可用的空间.通俗点说就是>maxSize 时候,阻塞,直到能够有空间插入元素

java源代码:

[html]  view plain  copy
  1. public void put(E e) throws InterruptedException {  
  2.        if (e == null) throw new NullPointerException();  
  3.        final E[] items = this.items;  
  4.        final ReentrantLock lock = this.lock;  
  5.        lock.lockInterruptibly();  
  6.        try {  
  7.            try {  
  8.                while (count == items.length)  
  9.                    notFull.await();  
  10.            } catch (InterruptedException ie) {  
  11.                notFull.signal(); // propagate to non-interrupted thread  
  12.                throw ie;  
  13.            }  
  14.            insert(e);  
  15.        } finally {  
  16.            lock.unlock();  
  17.        }  
  18.    }  

take: 获取并移除此队列的头部,在元素变得可用之前一直等待 。queue的长度 == 0 的时候,一直阻塞

java 源代码:

[html]  view plain  copy
  1. public E take() throws InterruptedException {  
  2.     final ReentrantLock lock = this.lock;  
  3.     lock.lockInterruptibly();  
  4.     try {  
  5.         try {  
  6.             while (count == 0)  
  7.                 notEmpty.await();  
  8.         } catch (InterruptedException ie) {  
  9.             notEmpty.signal(); // propagate to non-interrupted thread  
  10.             throw ie;  
  11.         }  
  12.         E x = extract();  
  13.         return x;  
  14.     } finally {  
  15.         lock.unlock();  
  16.     }  
  17. }  

add: 和collection的add一样,没什么可以说的。如果当前没有可用的空间,则抛出  IllegalStateException



例子如下:

[html]  view plain  copy
  1.     public static void main(String[] args) {  
  2.         java.util.concurrent.Executor executor = Executors.newFixedThreadPool(10);  
  3.         Runnable task = new Runnable() {  
  4.               
  5.             @Override  
  6.             public void run() {  
  7.                 System.out.println("ggg");  
  8.             }  
  9.         };  
  10.         executor.execute(task);  
  11.         */  
  12.           
  13.          BlockingQueue q = new ArrayBlockingQueue(10);  
  14.          Producer p = new Producer(q);  
  15.          Consumer c1 = new Consumer(q);  
  16.          Consumer c2 = new Consumer(q);  
  17.          new Thread(p).start();  
  18.          new Thread(c1).start();  
  19.          new Thread(c2).start();  
  20.   
  21.     }  
  22. }  
  23.   
  24.   
  25. class Producer implements Runnable {  
  26.        private final BlockingQueue<Object> queue;  
  27.        Producer(BlockingQueue q) { queue = q; }  
  28.        public void run() {  
  29.          for(int i=0;i<100;i++){  
  30.              try {  
  31.                 queue.put(i);  
  32.             } catch (InterruptedException e1) {  
  33.                 // TODO Auto-generated catch block  
  34.                 e1.printStackTrace();  
  35.             }   
  36.              try {  
  37.                 Thread.sleep(20);  
  38.             } catch (InterruptedException e) {  
  39.                 // TODO Auto-generated catch block  
  40.                 e.printStackTrace();  
  41.             }  
  42.          }  
  43.        }  
  44.   
  45.      }  
  46.   
  47.      class Consumer implements Runnable {  
  48.        private final BlockingQueue queue;  
  49.        Consumer(BlockingQueue q) { queue = q; }  
  50.        public void run() {  
  51.          try {  
  52.            while(true) {   
  53.                consume(  
  54.                        queue.take()  
  55.                        );   
  56.                }  
  57.          } catch (InterruptedException ex) {  
  58.                
  59.          }  
  60.        }  
  61.        void consume(Object x) {  
  62.            System.out.println(x);  
  63.              
  64.        }  
  65.      }  
<think>我们被要求提供关于JavaBlockingQueue的使用指南、原理和示例。根据引用内容,我们知道BlockingQueueJava并发包中的一个重要接口,它支持在队列满或空时阻塞等待的线程安全操作。我们将从以下几个方面展开: 1. BlockingQueue的核心概念 2. 主要实现类:ArrayBlockingQueue和LinkedBlockingQueue 3. 核心方法解析(添加元素和检索元素的方法) 4. 使用场景和示例 5. 原理剖析 6. 常见问题解答 下面开始详细回答。 --- ### 一、BlockingQueue 核心概念 BlockingQueue 是一个支持两个附加操作的队列:当队列为空时,从队列中获取元素的操作将被阻塞,直到队列非空;当队列满时,向队列中添加元素的操作将被阻塞,直到队列不满。这种特性使得 BlockingQueue 成为多线程编程中实现生产者-消费者模式的理想选择[^1]。 **核心特性**: - **线程安全**:所有实现类都是线程安全的。 - **阻塞操作**:提供阻塞插入和移除方法。 - **容量限制**:可以是有界队列(固定容量)或无界队列(容量为Integer.MAX_VALUE)。 --- ### 二、主要实现类 Java 提供了多种 BlockingQueue 的实现,最常用的是: 1. **ArrayBlockingQueue**: - 基于数组的有界阻塞队列。 - 按照FIFO(先进先出)原则排序元素。 - 创建时必须指定容量,且不可变。 - 支持公平锁策略(可选的构造函数参数),避免线程饥饿。 2. **LinkedBlockingQueue**: - 基于链表的可选有界阻塞队列。 - 默认容量为 `Integer.MAX_VALUE`(近似无界),也可在创建时指定容量。 - 按照FIFO原则排序元素。 - 通常比数组队列有更高的吞吐量,但在高并发下性能更不可预测。 其他实现包括 `PriorityBlockingQueue`(支持优先级排序)、`SynchronousQueue`(不存储元素,每个插入操作必须等待一个移除操作)、`DelayQueue`(元素只有在延迟期满后才能被取出)等[^1][^3]。 --- ### 三、核心方法解析 BlockingQueue 接口定义了四组不同的方法用于插入、移除和检查元素,每组方法在队列满或空时行为不同[^2]: #### 1. 添加元素 | 方法 | 行为 | |------|------| | `add(e)` | 如果队列未满,立即插入并返回`true`;否则抛出`IllegalStateException` | | `put(e)` | 如果队列满,则阻塞直到队列有空闲空间再插入 | | `offer(e)` | 如果队列未满,插入并返回`true`;否则返回`false` | | `offer(e, timeout, unit)` | 在指定的超时时间内尝试插入,成功返回`true`,超时返回`false` | #### 2. 移除元素 | 方法 | 行为 | |------|------| | `remove()` | 移除并返回队列头元素,如果队列为空则抛出`NoSuchElementException` | | `take()` | 如果队列为空,则阻塞直到队列有元素可用 | | `poll()` | 移除并返回队列头元素,队列为空时返回`null` | | `poll(timeout, unit)` | 在指定的超时时间内尝试移除并返回队列头元素,超时返回`null` | #### 3. 检查元素 | 方法 | 行为 | |------|------| | `element()` | 返回队列头元素(不移除),队列为空时抛出`NoSuchElementException` | | `peek()` | 返回队列头元素(不移除),队列为空时返回`null` | > **注意**:这些方法中,`put()` 和 `take()` 是阻塞操作的核心方法。 --- ### 四、使用场景和示例 #### 场景:生产者-消费者模型 生产者线程生成数据并放入队列,消费者线程从队列中取出数据并处理。 ```java import java.util.concurrent.*; public class ProducerConsumerExample { private static final int QUEUE_CAPACITY = 5; private static final BlockingQueue<Integer> queue = new ArrayBlockingQueue<>(QUEUE_CAPACITY); public static void main(String[] args) { // 创建线程池 ExecutorService executor = Executors.newFixedThreadPool(2); // 生产者任务 Runnable producer = () -> { try { for (int i = 0; i < 10; i++) { queue.put(i); // 阻塞直到队列有空位 System.out.println("生产: " + i); Thread.sleep(100); // 模拟生产耗时 } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } }; // 消费者任务 Runnable consumer = () -> { try { for (int i = 0; i < 10; i++) { Integer item = queue.take(); // 阻塞直到队列有元素 System.out.println("消费: " + item); Thread.sleep(200); // 模拟消费耗时 } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } }; // 启动生产者和消费者 executor.submit(producer); executor.submit(consumer); // 关闭线程池 executor.shutdown(); } } ``` #### 场景:任务提交与超时控制 使用 `offer(e, timeout, unit)` 和 `poll(timeout, unit)` 实现带超时的任务提交。 ```java public class TimeoutExample { public static void main(String[] args) throws InterruptedException { BlockingQueue<String> queue = new LinkedBlockingQueue<>(1); // 生产者:尝试在2秒内插入元素 new Thread(() -> { try { boolean success = queue.offer("data", 2, TimeUnit.SECONDS); System.out.println("插入结果: " + success); } catch (InterruptedException e) { e.printStackTrace(); } }).start(); // 消费者:等待1秒后取走元素 Thread.sleep(1000); String data = queue.poll(1, TimeUnit.SECONDS); System.out.println("取出数据: " + data); } } ``` --- ### 五、原理剖析 #### 1. 锁与条件变量 BlockingQueue 的实现通常依赖于**可重入锁(ReentrantLock)**和**条件变量(Condition)**。以 `ArrayBlockingQueue` 为例: ```java // ArrayBlockingQueue 内部实现关键代码 final ReentrantLock lock; private final Condition notEmpty; // 等待非空的条件 private final Condition notFull; // 等待非满的条件 public ArrayBlockingQueue(int capacity, boolean fair) { // ... 初始化数组 lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); } // put 方法实现 public void put(E e) throws InterruptedException { Objects.requireNonNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) // 队列满 notFull.await(); // 等待非满条件 enqueue(e); // 入队 } finally { lock.unlock(); } } // take 方法实现 public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) // 队列空 notEmpty.await(); // 等待非空条件 return dequeue(); // 出队 } finally { lock.unlock(); } } // 入队后唤醒等待非空的线程 private void enqueue(E x) { // ... 入队操作 notEmpty.signal(); // 唤醒一个等待非空的线程 } // 出队后唤醒等待非满的线程 private E dequeue() { // ... 出队操作 notFull.signal(); // 唤醒一个等待非满的线程 return x; } ``` #### 2. 无界队列实现 `LinkedBlockingQueue` 默认无界(实际容量为`Integer.MAX_VALUE`),其内部使用两个锁(`putLock` 和 `takeLock`)分别控制入队和出队操作,减少锁竞争,提高并发性能[^3]。 --- ### 六、常见问题解答 #### ❌ 问题1:如何选择 ArrayBlockingQueue 和 LinkedBlockingQueue? - **ArrayBlockingQueue**:固定大小,内存连续,性能稳定,适合已知固定容量的场景。 - **LinkedBlockingQueue**:默认无界(可指定容量),适合任务量未知但可能很大的场景,但注意可能引起内存溢出。 #### ❌ 问题2:阻塞队列在什么情况下会导致线程饥饿? - 使用非公平锁(默认)时,新来的线程可能比等待的线程先获取锁,导致等待线程饥饿。 - **解决方案**:创建队列时指定公平锁(如 `new ArrayBlockingQueue<>(100, true)`),但会降低吞吐量。 #### ❌ 问题3:如何处理阻塞队列中的任务拒绝? 当使用有界队列时,生产者可能因队列满而被阻塞或拒绝。常见处理策略: - 使用 `offer(e, timeout, unit)` 设置超时,超时后记录日志或执行降级逻辑。 - 结合线程池的 `RejectedExecutionHandler` 处理(如丢弃任务、调用者运行等)[^3]。 --- ### 七、最佳实践 1. **合理设置队列容量**: - 过小:频繁阻塞,降低吞吐。 - 过大:占用内存,可能引发OOM(无界队列风险)。 2. **优先使用标准库提供的线程池**: ```java // 使用 ThreadPoolExecutor 并指定阻塞队列 ExecutorService executor = new ThreadPoolExecutor( 4, // 核心线程数 8, // 最大线程数 60, TimeUnit.SECONDS, new ArrayBlockingQueue<>(100) // 使用有界队列 ); ``` 3. **监控队列状态**: ```java // 定期打印队列大小 ScheduledExecutorService monitor = Executors.newSingleThreadScheduledExecutor(); monitor.scheduleAtFixedRate(() -> System.out.println("队列大小: " + queue.size()), 0, 1, TimeUnit.SECONDS ); ``` --- 通过以上解析,我们深入了解了 BlockingQueue 的使用方法、内部原理及实践技巧。合理使用阻塞队列可以显著简化多线程编程,提高系统稳定性和性能[^1][^3]。 §§相关问题§§ 1. 如何监控 BlockingQueue 的性能指标(如队列长度、等待时间)? 2. BlockingQueue 在分布式系统中如何应用? 3. 如何实现一个自定义的 BlockingQueue? 4. BlockingQueue 与消息队列(如Kafka、RabbitMQ)有何异同?</think>### Java BlockingQueue 使用指南、原理与示例 BlockingQueueJava 并发包 (`java.util.concurrent`) 中的核心接口,专为生产者-消费者模型设计,支持线程安全的阻塞操作。以下是全面解析: --- #### 一、BlockingQueue 核心原理 | 特性 | 说明 | |---------------------|----------------------------------------------------------------------| | **阻塞机制** | 队列满时插入操作阻塞,队列空时获取操作阻塞[^1] | | **线程安全** | 内置锁(ReentrantLock)和条件变量(Condition)实现线程同步 | | **容量策略** | 分为有界队列(如 ArrayBlockingQueue)和无界队列(如 LinkedBlockingQueue) | | **FIFO 原则** | 默认先进先出(PriorityBlockingQueue 支持优先级排序) | **底层实现关键**: ```java // ArrayBlockingQueue 核心锁机制 final ReentrantLock lock; private final Condition notEmpty; // 非空条件 private final Condition notFull; // 非满条件 public void put(E e) throws InterruptedException { Objects.requireNonNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) // 队列满时阻塞 notFull.await(); enqueue(e); // 入队并唤醒消费者 } finally { lock.unlock(); } } ``` --- #### 二、核心方法对比 ##### 1. 添加元素方法 | 方法 | 队列满时行为 | 返回值 | |-------------------------------|----------------------------------------|----------------------| | `add(e)` | 抛出 `IllegalStateException` | `boolean` (成功/失败)| | `put(e)` | 阻塞直到有空位 | `void` | | `offer(e)` | 立即返回失败 | `boolean` | | `offer(e, timeout, timeUnit)` | 阻塞等待指定时间,超时返回失败 | `boolean` | ##### 2. 获取元素方法 | 方法 | 队列空时行为 | 返回值 | |-------------------------------|----------------------------------------|-------------| | `remove()` | 抛出 `NoSuchElementException` | `E` | | `take()` | 阻塞直到有元素 | `E` | | `poll()` | 立即返回 `null` | `E` 或 `null`| | `poll(timeout, timeUnit)` | 阻塞等待指定时间,超时返回 `null` | `E` 或 `null`| | `peek()` | 返回队首元素(不删除) | `E` 或 `null`| [^2] --- #### 三、常用实现类对比 | 实现类 | 数据结构 | 是否有界 | 锁机制 | 适用场景 | |-----------------------|----------------|----------|----------------------|------------------------------| | `ArrayBlockingQueue` | 数组 | 有界 | 单锁(生产消费共用) | 固定大小队列,内存可控 | | `LinkedBlockingQueue` | 链表 | 可选有界 | 双锁(分离生产消费) | 高吞吐量场景[^1] | | `PriorityBlockingQueue` | 二叉堆 | 无界 | 单锁 | 按优先级处理任务 | | `SynchronousQueue` | 无容器 | 特殊 | CAS 操作 | 直接传递任务(生产者等消费者)| --- #### 四、实战代码示例 ##### 1. 生产者-消费者模型(ArrayBlockingQueue) ```java import java.util.concurrent.*; public class ProducerConsumerExample { private static final int CAPACITY = 3; private static final BlockingQueue<String> queue = new ArrayBlockingQueue<>(CAPACITY); public static void main(String[] args) { // 生产者 Runnable producer = () -> { try { for (int i = 0; i < 5; i++) { String item = "Item-" + i; queue.put(item); // 队列满时阻塞 System.out.println("生产: " + item); Thread.sleep(200); } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } }; // 消费者 Runnable consumer = () -> { try { for (int i = 0; i < 5; i++) { String item = queue.take(); // 队列空时阻塞 System.out.println("消费: " + item); Thread.sleep(500); } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } }; new Thread(producer).start(); new Thread(consumer).start(); } } ``` ##### 2. 超时控制(offer/poll) ```java // 生产者线程 if (!queue.offer("Urgent", 2, TimeUnit.SECONDS)) { System.err.println("插入失败:队列已满超时"); } // 消费者线程 String item = queue.poll(3, TimeUnit.SECONDS); if (item == null) { System.out.println("获取失败:队列空超时"); } ``` ##### 3. 优先级队列(PriorityBlockingQueue) ```java BlockingQueue<Task> priorityQueue = new PriorityBlockingQueue<>( 10, Comparator.comparingInt(Task::getPriority) ); // 添加任务 priorityQueue.put(new Task("Low", 1)); priorityQueue.put(new Task("High", 3)); Task next = priorityQueue.take(); // 先取出优先级3的任务 ``` --- #### 五、典型应用场景 1. **线程池任务调度** ```java // ThreadPoolExecutor 内部使用 BlockingQueue ExecutorService executor = new ThreadPoolExecutor( 2, 4, 60, TimeUnit.SECONDS, new ArrayBlockingQueue<>(100) // 任务队列 ); ``` 2. **高并发请求缓冲** ```java // 处理突发流量 BlockingQueue<HttpRequest> buffer = new LinkedBlockingQueue<>(1000); ``` 3. **多阶段数据处理流水线** ```java // 阶段1 → 阶段2 传递数据 BlockingQueue<Data> stage1Output = new LinkedBlockingQueue<>(); BlockingQueue<Result> stage2Output = new ArrayBlockingQueue<>(50); ``` --- #### 六、常见问题解决方案 ##### ❌ 问题1:队列满导致生产者阻塞 **解决方案**: - 使用 `offer(e, timeout, unit)` 设置超时 - 启用拒绝策略(如丢弃旧元素) ```java // 自定义拒绝策略:丢弃最旧元素 BlockingQueue<String> queue = new LinkedBlockingQueue<>(10) { @Override public boolean offer(String e) { if (size() == capacity) poll(); // 丢弃队首 return super.offer(e); } }; ``` ##### ❌ 问题2:消费者处理速度慢拖垮系统 **解决方案**: - 限制队列容量(避免无界队列 OOM) - 监控队列长度并告警 ```java if (queue.size() > WARNING_THRESHOLD) { log.warn("队列积压: {}/{}", queue.size(), queue.remainingCapacity()); } ``` ##### ❌ 问题3:线程阻塞导致无法退出 **解决方案**: - 使用中断机制唤醒线程 ```java // 消费者线程退出逻辑 while (!Thread.currentThread().isInterrupted()) { String item = queue.poll(1, TimeUnit.SECONDS); if (item != null) process(item); } ``` --- #### 七、性能优化建议 1. **选择合适队列类型** - 高吞吐 → `LinkedBlockingQueue`(分离锁提升并发) - 低延迟 → `ArrayBlockingQueue`(内存连续访问快) 2. **避免无界队列** - 防止内存溢出(OOM),尤其在高并发场景[^4] 3. **监控关键指标** ```java // 监控队列负载 double loadFactor = (double) queue.size() / queue.remainingCapacity(); ``` --- 通过合理使用 BlockingQueue,可有效解决线程间数据传递的同步问题,构建高效稳定的并发系统[^1][^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值