分层缓存
一、缓存概念
1、概念
用于存储数据的硬件或软件的组成部分,以使得后续更快访问相应的数据,缓存中的数据肯呢个是提前计算好的结果、数据的副本等。
2、作用
缓存是分布式系统中的重要组建,主要解决高并发、大数据场景下热点数据访问的性能问题,提供高性能的数据快速访问。
3、原理
a、将数据写入读写速度最快的存储设备。
b、将数据缓存到离应用最近的地方。
c、将数据缓存到离客户最近的地方。
二、缓存分类
1、CDN缓存
a、概念
cdn缓存就是在浏览器和服务器间增加的一层缓存,通俗 点,就是当我们发送一个web请求 时,会先经过它一道手,然后它帮我们计算路径,去 哪得到这些东东(representations)的路径 短且快。这个是网站管理员部署的,所以他们也可以将大家经常访问的representations放在CDN 里,这样,就响应就更快了
b、场景
主要缓存静态资源,例如图片、html、视频等。
c、应用图
2、反向代理缓存
a、基本介绍
反向代理位于应用服务器机房,处理所有对WEB服务器的请求。 如果用户请求的页面在代理服务器上有缓冲的话,代理服务器直接将缓冲内容发送给用户。如果没有缓冲则先向WEB服务器发出请求,取回数据,本地缓存后再发送给用户。通过降低向WEB服务器的请求数,从而降低了WEB服务器的负载
b、场景
主要做一些图片等静态资源的缓存,代表有Nginx。
c、nginx的反向代理缓存图解
1)缓存命中
2)缓存未命中
3、本地应用缓存
a、基本介绍
指的是在应用中的缓存组件,其最大的优点是应用和cache是在同一个进程内部,请求缓存非常快速,没有过多的网络开销等,在单应用不需要集群支持或者集群情况下各节点无需互相通知的场景下使用本地缓存较合适; 同时,它的缺点也是应为缓存跟应用程序耦合,多个应用程序无法直接的共享缓存,各应用或集群的各节点都需要维护自己的单独缓存,对内存是一种浪费。
b、缓存介质
1)硬盘缓存
将数据缓存到硬盘,读取时从硬盘读取,原理是直接读取本机文件,减少了网络传输消耗,比 通过网络读取数据库更快。适用于对速度要求不是很高,但需要大量缓存存储的场景。
2)内存缓存
直接将数据存储到本机内存中,通过程序直接维护缓存对象,是访问速度最快的方式。
c、编程中直接实现
1)应用场景
主要满足单机场景下的小数据量缓存需求,同时对缓存数据的变更,无需太敏感感知,如一 般 配置管理、基础静态数据等场景。
2)优点
能直接在heap区内读写,最快也最方便。
3)缺点
受heap区域影响,缓存的数据量非常有限;缓存时间受GC影响。
4、分布式缓存
a、基本介绍
指的是应用分离的缓存组建件或服务,其最大的优点是自身就是一个独立的应用,与本地应用 隔离,多个应用可直接的共享缓存。
b、应用场景
缓存经过复杂运算得出的数据;缓存存储系统中频繁访问的热点数据,减轻存储系统压力
c、接入方式
程序代码实现的中间层;独立部署的中间件,目前常用的中间件有Redis和Memcached
d、介绍分布式缓存常见的2大开源实现Memcached和Redis
1)Memcached
基本介绍
Memcached是一个高性能,分布式内存对象缓存系统,通过在内存里维护一个 统一的巨大的hash表,它能够用来存储各种格式的数据,包括图像、视频、文件以 及数据库检索的结果等。简单的说就是将数据调用到内存中,然后从内存中读取,从 而大大提高读取速度。
特点
基本架构
缓存数据过期策略
LRU(最近最少使用)到期失效策略,在Memcached内存储数据项时,可以指定它在缓存的失效时间,默认为永久。当Memcached服务器用完分配的内时,失效的数据被首先替换,然后也是最近未使用的数据。
数据淘汰内部实现
懒淘汰机制:每次往缓存放入数据的时候,都会存一个时间,在读取 的时候要和设置的时间做TTL比较来判断是否过期
分布式集群实现
服务端并没有 “ 分布式 ” 功能。每个服务器都是完全独立和隔离的服务。 Memcached的分布式,是由客户端程序实现的
Redis
基本介绍
Redis是一个远程内存数据库(非关系型数据库),性能强劲,具有复制特性以及解决问题而生的独一无二的数据模型。它可以存储键值对与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘,可以使用复制特性来扩展读性能, Redis还可以使用客户端分片来扩展写性能。内置了 复制(replication),LUA脚本(Lua scripting),LRU驱动事件(LRU eviction),事务(transactions) 和不同级别的 磁盘持久化(persistence), 并通过 Redis哨兵(Sentinel)和自动分区(Cluster)提供高可用性(high availability)。
数据模型
数据淘汰策略
数据淘汰内部实现
持久化方式
底层实现部分解析
图片来自优快云博主——上帝禁区,如果有哪位神仙知道是用什么画图软件画的欢迎评论,我也很想知道。
启动的部分过程图解
server端持久化的部分操作图解
底层哈希表实现(渐进式Rehash)
初始化字典
新增字典元素图解
REHASH执行流程
缓存设计原则
Redis与Memcached比较
三、缓存带来的复杂问题
1、数据一致性
a、描述
因为缓存属于持久化数据的一个副本,因此不可避免的会出现数据不一致问题,导致脏读或读不到数据的情况。
b、Cache Aside Pattern
最经典的缓存+数据库读写的模式,就是 Cache Aside Pattern。
1)读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。
2)更新的时候,先更新数据库,然后再删除缓存。
为什么是删除缓存,而不是更新缓存?
原因很简单,很多时候,在复杂点的缓存场景,缓存不单单是数据库中直接取出来的值。
比如可能更新了某个表的一个字段,然后其对应的缓存,是需要查询另外两个表的数据并进行运算,才能计算出缓存最新的值的。另外更新缓存的代价有时候是很高的。是不是说,每次修改数据库的时候,都一定要将其对应的缓存更新一份?也许有的场景是这样,但是对于比较复杂的缓存数据计算的场景,就不是这样了。如果你频繁修改一个缓存涉及的多个表,缓存也频繁更新。但是问题在于,这个缓存到底会不会被频繁访问到?
举个栗子,一个缓存涉及的表的字段,在 1 分钟内就修改了 20 次,或者是 100 次,那么缓存更新 20 次、100 次;但是这个缓存在 1 分钟内只被读取了 1 次,有大量的冷数据。实际上,如果你只是删除缓存的话,那么在 1 分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低。用到缓存才去算缓存。
其实删除缓存,而不是更新缓存,就是一个 lazy 计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算。像 mybatis,hibernate,都有懒加载思想。查询一个部门,部门带了一个员工的 list,没有必要说每次查询部门,都把里面的 1000 个员工的数据也同时查出来啊。80% 的情况,查这个部门,就只是要访问这个部门的信息就可以了。先查部门,同时要访问里面的员工,那么这个时候只有在你要访问里面的员工的时候,才会去数据库里面查询 1000 个员工。
c、最初级的缓存不一致问题及解决方案
问题:先更新数据库,再删除缓存。如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据就出现了不一致。
解决思路:先删除缓存,再更新数据库。如果数据库更新失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致。因为读的时候缓存没有,所以去读了数据库中的旧数据,然后更新到缓存中。
d、比较复杂的数据不一致问题分析
数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改。一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中。随后数据变更的程序完成了数据库的修改。完了,数据库和缓存中的数据不一样了…
为什么上亿流量高并发场景下,缓存会出现这个问题?
只有在对一个数据在并发的进行读写的时候,才可能会出现这种问题。其实如果说你的并发量很低的话,特别是读并发很低,每天访问量就 1 万次,那么很少的情况下,会出现刚才描述的那种不一致的场景。但是问题是,如果每天的是上亿的流量,每秒并发读是几万,每秒只要有数据更新的请求,就可能会出现上述的数据库+缓存不一致的情况。
解决方案如下:
更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。
一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。这样的话,一个数据变更的操作,先删除缓存,然后再去更新数据库,但是还没完成更新。此时如果一个读请求过来,没有读到缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成。
这里有一个优化点,一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可。待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中。如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回;如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值。
高并发的场景下,该解决方案要注意的问题:
1)读请求长时阻塞
由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回。该解决方案,最大的风险点在于说,可能数据更新很频繁,导致队列中积压了大量更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库。务必通过一些模拟真实的测试,看看更新数据的频率是怎样的。另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,可能需要部署多个服务,每个服务分摊一些数据的更新操作。如果一个内存队列里居然会挤压 100 个商品的库存修改操作,每个库存修改操作要耗费 10ms 去完成,那么最后一个商品的读请求,可能等待 10 * 100 = 1000ms = 1s 后,才能得到数据,这个时候就导致读请求的长时阻塞。一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会 hang 多少时间,如果读请求在 200ms 返回,如果你计算过后,哪怕是最繁忙的时候,积压 10 个更新操作,最多等待 200ms,那还可以的。
如果一个内存队列中可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少。其实根据之前的项目经验,一般来说,数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的。像这种针对读高并发、读缓存架构的项目,一般来说写请求是非常少的,每秒的 QPS 能到几百就不错了。我们来实际粗略测算一下。如果一秒有 500 的写操作,如果分成 5 个时间片,每 200ms 就 100 个写操作,放到 20 个内存队列中,每个内存队列,可能就积压 5 个写操作。每个写操作性能测试后,一般是在 20ms 左右就完成,那么针对每个内存队列的数据的读请求,也就最多 hang 一会儿,200ms 以内肯定能返回了。经过刚才简单的测算,我们知道,单机支撑的写 QPS 在几百是没问题的,如果写 QPS 扩大了 10 倍,那么就扩容机器,扩容 10 倍的机器,每个机器 20 个队列。
2)读请求并发量过高
这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时 hang 在服务上,看服务能不能扛的住,需要多少机器才能扛住最大的极限情况的峰值。但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大。
3)多服务实例部署的请求路由
可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过 Nginx 服务器路由到相同的服务实例上。比如说,对同一个商品的读写请求,全部路由到同一台机器上。可以自己去做服务间的按照某个请求参数的 hash 路由,也可以用 Nginx 的 hash 路由功能等等。
4)热点商品的路由问题,导致请求的倾斜
万一某个商品的读写请求特别高,全部打到相同的机器的相同的队列里面去了,可能会造成某台机器的压力过大。就是说,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以其实要根据业务系统去看,如果更新频率不是太高的话,这个问题的影响并不是特别大,但是的确可能某些机器的负载会高一些。
2、缓存雪崩
对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机。缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了。此时,如果没有采用什么特别的方案来处理这个故障,DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了。这就是缓存雪崩。
大约在 3 年前,国内比较知名的一个互联网公司,曾因为缓存事故,导致雪崩,后台系统全部崩溃,事故从当天下午持续到晚上凌晨 3~4 点,公司损失了几千万。
缓存雪崩的事前事中事后的解决方案如下。
1)事前:redis 高可用,主从+哨兵,redis cluster,避免全盘崩溃。
2)事中:本地 ehcache 缓存 + hystrix 限流&降级,避免 MySQL 被打死。
3)事后:redis 持久化,一旦重启,自动从磁盘上加载数据,快速恢复缓存数据。
3、缓存穿透
对于系统A,假设一秒 5000 个请求,结果其中 4000 个请求是黑客发出的恶意攻击。黑客发出的那 4000 个攻击,缓存中查不到,每次你去数据库里查,也查不到。
举个例子。数据库 id 是从 1 开始的,结果黑客发过来的请求 id 全部都是负数。这样的话,缓存中不会有,请求每次都“视缓存于无物”,直接查询数据库。这种恶意攻击场景的缓存穿透就会直接把数据库给打死。
解决方式很简单,每次系统 A 从数据库中只要没查到,就写一个空值到缓存里去,比如set -999 UNKNOWN。然后设置一个过期时间,这样的话,下次有相同的 key 来访问的时候,在缓存失效之前,都可以直接从缓存中取数据。
4、缓存击穿
缓存击穿,就是说某个 key 非常热点,访问非常频繁,处于集中式高并发访问的情况,当这个 key 在失效的瞬间,大量的请求就击穿了缓存,直接请求数据库,就像是在一道屏障上凿开了一个洞。
解决方式也很简单,可以将热点数据设置为永远不过期;或者基于 redis or zookeeper 实现互斥锁,等待第一个请求构建完缓存之后,再释放锁,进而其它请求才能通过该 key 访问数据。
用户发送一个请求,系统 A 收到请求后,先查本地 ehcache 缓存,如果没查到再查 redis。如果 ehcache 和 redis 都没有,再查数据库,将数据库中的结果,写入 ehcache 和 redis 中。
限流组件,可以设置每秒的请求,有多少能通过组件,剩余的未通过的请求,怎么办?走降级!可以返回一些默认的值,或者友情提示,或者空白的值。
好处:
a、数据库绝对不会死,限流组件确保了每秒只有多少个请求能通过。
b、只要数据库不死,就是说,对用户来说,2/5 的请求都是可以被处理的。
c、只要有 2/5 的请求可以被处理,就意味着你的系统没死,对用户来说,可能就是点击几次刷不出来页面,但是多点几次,就可以刷出来一次。
四、Redis简介
1、过期策略
redis 过期策略是:定期删除+惰性删除。
所谓定期删除,指的是 redis 默认是每隔 100ms 就随机抽取一些设置了过期时间的 key,检查其是否过期,如果过期就删除。
假设 redis 里放了 10w 个 key,都设置了过期时间,你每隔几百毫秒,就检查 10w 个 key,那 redis 基本上就死了,cpu 负载会很高的,消耗在你的检查过期 key 上了。注意,这里可不是每隔 100ms 就遍历所有的设置过期时间的 key,那样就是一场性能上的灾难。实际上 redis 是每隔 100ms 随机抽取一些 key 来检查和删除的。但是问题是,定期删除可能会导致很多过期 key 到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个 key 的时候,redis 会检查一下 ,这个 key 如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。
获取 key 的时候,如果此时 key 已经过期,就删除,不会返回任何东西。
但是实际上这还是有问题的,如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 redis 内存块耗尽了,咋整?就用到内存淘汰机制。
2、内存淘汰机制
redis 内存淘汰机制有以下几个:
a、noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。
b、allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。
c、allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的 key 给干掉啊。
d、volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(这个一般不太合适)。
e、volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。
f、volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除
3、redis 持久化
a、RDB 持久化机制,是对 redis 中的数据执行周期性的持久化。
b、AOF 机制对每条写入命令作为日志,以append-only的模式写入一个日志文件中,在 redis 重启的时候,可以通过回放AOF 日志中的写入指令来重新构建整个数据集。
通过 RDB 或 AOF,都可以将 redis 内存中的数据给持久化到磁盘上面来,然后可以将这些数据备份到别的地方去,比如说阿里云等云服务。
如果 redis 挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录中,然后重新启动 redis,redis 就会自动根据持久化数据文件中的数据,去恢复内存中的数据,继续对外提供服务。
如果同时使用 RDB 和 AOF 两种持久化机制,那么在 redis 重启的时候,会使用AOF来重新构建数据,因为 AOF 中的数据更加完整。
c、RDB 优缺点
1)RDB 会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,非常适合做冷备,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份 redis 中的数据。
2)RDB 对 redis 对外提供的读写服务,影响非常小,可以让 redis 保持高性能,因为 redis 主进程只需要 fork 一个子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化即可。
3)相对于 AOF 持久化机制来说,直接基于 RDB 数据文件来重启和恢复 redis 进程,更加快速。
4)如果想要在 redis 故障时,尽可能少的丢失数据,那么 RDB 没有 AOF 好。一般来说,RDB 数据快照文件,都是每隔 5 分钟,或者更长时间生成一次,这个时候就得接受一旦 redis 进程宕机,那么会丢失最近 5 分钟的数据。
5)RDB 每次在 fork 子进程来执行 RDB 快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒。
d、AOF 优缺点
1)AOF 可以更好的保护数据不丢失,一般 AOF 会每隔 1 秒,通过一个后台线程执行一次fsync操作,最多丢失 1 秒钟的数据。
2)AOF 日志文件以append-only模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。
3)AOF 日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在rewrite log 的时候,会对其中的指令进行压缩,创建出一份需要恢复数据的最小日志出来。在创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。
4)AOF 日志文件的命令通过非常可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复。比如某人不小心用 flushall 命令清空了所有数据,只要这个时候后台 rewrite 还没有发生,那么就可以立即拷贝 AOF 文件,将最后一条 flushall 命令给删了,然后再将该 AOF 文件放回去,就可以通过恢复机制,自动恢复所有数据。
5)对于同一份数据来说,AOF 日志文件通常比 RDB 数据快照文件更大。
6)AOF 开启后,支持的写 QPS 会比 RDB 支持的写 QPS 低,因为 AOF 一般会配置成每秒 fsync 一次日志文件,当然,每秒一次 fsync,性能也还是很高的。(如果实时写入,那么 QPS 会大降,redis 性能会大大降低)
7)以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的基于命令日志 / merge / 回放的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多。
e、RDB 和 AOF 到底该如何选择
1)不要仅仅使用 RDB,因为那样会导致你丢失很多数据;
2)也不要仅仅使用 AOF,因为那样有两个问题:第一,你通过 AOF 做冷备,没有 RDB 做冷备来的恢复速度更快;第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug;
3)redis 支持同时开启开启两种持久化方式,我们可以综合使用 AOF 和 RDB 两种持久化机制,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 用 RDB 来做不同程度的冷备,在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复。
五、分层缓存架构设计
1、访问顺序
a、CND缓存层,用来缓存图片、视频、文件等静态资源。
b、反向代理缓存层,用来缓存用户请求的html、css、js等静态资源。
c、本地应用缓存层,用来缓存应用字段等常用数据。
d、分布式缓存层,用来缓存数据库中的热点数据、经过复杂运算得出的数据。
e、数据库层。
2、请求顺序
a、客户端发起请求,如果CDN有缓存则直接返回。
b、如果CDN没有缓存,则访问反向代理服务器,返向代理服务器如果有缓存则直接返回。
c、如果反向代理服务器无缓存或动态请求,则访问应用服务器。
d、应用服务器访问本地缓存,如果有本地缓存,则返回代理服务器,代理服务器缓存数据(动态请求不缓存)
e、如果本地缓存无数据,则读取分布式缓存,并返回应用服务器。
f、如果分布式缓存无数据,则应用程序读取数据库,并放入分布式缓存。