THE BODY IS NOT A GIVEN: JOINT AGENT POLICY LEARNING AND MORPHOLOGY EVOLUTION

本文提出了一种结合进化过程与强化学习的方法,称为POEM(Policy Optimization While Evolving Morphology),用于发现优秀身体结构与策略的智能体。研究中,作者通过将RL与进化算法结合,在类似Robo-Sumo的环境中,展示了该方法能够生成性能显著优于仅优化策略的基线智能体。此外,还提出了一种利用合作博弈论中的夏普利值来评估个体身体组件对性能贡献的方法,考虑了组件间的协同效应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ABSTRACT

Reinforcement learning (RL) has proven to be a powerful paradigm for deriving complex behaviors from simple reward signals in a wide range of environments. When applying RL to continuous control agents in simulated physics environ-ments, the body is usually considered to be part of the environment. However, during evolution the physical body of biological organisms and their controlling brains are co-evolved, thus exploring a much larger space of actuator/controller configurations. Put differently, the intelligence does not reside only in the agent’s mind, but also in the design of their body. We propose a method for uncovering strong agents, consisting of a good combination of a body and policy, based on combining RL with an evolutionary proced

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Adam婷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值